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SUMMARY

The static and dynamic stability derivatives of a ducted pro-

I. peller are predicted by theoretical analysis. The analysis is based

"V on the theory presenced in Reference 1, and the ducted propeller is

initially represented by a short, straight, thin ring surrounding a

uniformly loaded actuator disk. Then the interference effect of the

ring duct on an :ctual propeller with finite number of blades is

calculated in order to determine the contribution of the propeller

to the stabilit, derivatives of the ducted propeller.

The analysis is applied to the case of a torpedo-like config-

uration consist2.nq of a body of revolution with a rear-mounted ducted

propeller in axial flow. The natural frequency and damping of the

configuration is cal-.ulated, and the individual contributions of

f [ the duct, the prope-ler, the hull, and a fin (added for static sta-

bility) are dete.rwined. It is found that the ducted propeller is

a more effective oscillation damper than is a fin of the same pro-

jected area and that the effectiveness increases with propeller disk

I. loading. The contribution of the ducted propeller to the dynamic

I stability of the rorpedo is found to be dominated by the static sta-

bility derivative CN of the isolated ducted propeller.
a

The Lhenrv for the ducted propeller is compared with available

experimental daa in h-overing, steady axial flow, and steady flow

at angle of att-dck. It is found that the important derivative CNa

is predicted well for small angles of attack by the present theory.
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The division of thrust between duct and propeller is predicted mod-

erately well for ducts of small chord/diameter ratios with no flow

!- separation. Experimental data suitable for comparison with experi-

ment are extremely sparse since f±cw separation is generally present

at the duct leading edge.

A method for reducing ducted propeller data is presented and

shown to give better agreement with theory than conventional methods.

A qualitative analysis of real slipstream effects is presented, and

an experimental program is outlined for obtaining some badly needed

data on ducted propellers without leading-edge flow separation.
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Vol volume of hull

Vol* volume of hull includino -s boundary-layer dis-
placement thickness

Vs local swirl velocity cclaponent generated by pro-
peller (Fig. 6)

v radial velocity component induced by duct wake at
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W relative local fluid velocity on duct surface
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a uangle of final slipstream or jet relative to duct
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a 0 mean free-stream angle of attack, rad (Fig. l(a))

1" • propeller blade pitch angle (between blade chord
and plane of rotation)

' 7 vorticity shed by actuator disk (Fig. 1(a))

lyTaYq components of bound vorticity on duct due to actuator
r- disk, angle of attack of free stream, and pitching
L= motion of duct, respectively (Fig. 2)

r k a constant (ra/Cos •) given by Equation (A.64)

dPw trailing vortex filament in duct wake (Fig. 2)
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+ c/2

.r f C/2 y dx
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6* displacement thickness of hull boundary layer

tAp increase in static and total pressure across actuator
disk, TP(D)/ A

E duct thickness

"radius vector in circle plane (Fig. 1(b)) and
Equation (A.13)

ratio of damping to critical damping

hovering or compressor efficiency (Eq. (196))
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7 •p propulsive efficiency (Eq. (183))

e angle in circle plane (Fig. 1(b)), or momentum
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? stream function
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a axial component
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SL at base of hull

N component of moment due to N

So far upstream
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1. INTRODUCTION

The benefits to be gained by ducting or shrouding a propeller

for static operation and low-speed flight were demonstrated in 1931

by the experiments of Stipa in Italy. Since that time, and partic-

ularly in recent years when hovering flight and vertical take-off

became feasible for conventional aircraft, ducted propellers have

L. received considerable attention from numerous investigators. A

vast number of individual experimental programs have been under-

taken, as reviewed in Reference 2, and a number of VTOL (vertical

take-off and landing) vehicles were designed and built employing

ducted propellers.

Because of its complexity, however, the theory of the ducted

propeller has lagged far behind experiment. Only now is a rigorous

self-consistent theory emerging, even for predicting the aerodynamic

forces and moments on ducted propellers in steady axial flow. This

theory (Refs. 3 and 4) is based on the classical method of singu-

larities in three dimensions and is thus far restricted to small

angles of attack and light propeller loadings (i.e., small pertur-

bations). However, an approximate theory for all angles of attack

has been developed by Burggraf in Reference 1 in which the ducted

propeller is represented by a short, thin, straight duct surrounding

a uniformly loaded actuator disk. This representation permits the

assumption of nearly two-dimensional flow over each chordwise strip

of the duct.

. As for dynamic stability derivatives, the situation is far

worse. At this time, there appear to be neither experimental data

Ii
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nor any theoretical analysis for the dynamic stability derivatives

of an isolated ducted propeller.

The purpose of the present investigation is to provide a the-

oretical analysis for predicting the forces, moments, and stability

derivatives of an isolated ducted propeller for hovering and for

forward flight at all angles of attack. In order to accomplish

this end, we shall first introduce the assumptions made by Burggraf

in Reference 1. We shall then extend his analysis to cover the

cases of pitching and plunging flight, and, finally, we shall gen-

eralize the analysis to include the interference effect of the

duct on a propeller with finite number of blades. In the course

of the analysis, we shall investigate the approximations made in

Reference 1, particularly the averaging processes used in calculat-

ing certain induced velocities, and we shall investigate the effect

of altering the propeller location within the duct.

The theory developed for the ducted propeller will be applied

herein to a torpedo-like configuration in order to investigate its

dynamic stability and to get some insight into the effectiveness of

the ducted propeller as a stabilizer and oscillation damper. For

this problem, the thrust interference between the hull and the

ducted propeller will also be investigated by approximate methods.

In addition to the basic analysis, a qualitative analysis of

real slipstream effects will be presented, and the latter will be

used in developing a rational method for comparison of theoretical

and experimental results.



-3-

I2. APPROACH TO THE DUCTED-PROPELLER ANALYSIS

The primary objective of this study is the prediction of the

stability derivatives of a ducted propeller without restriction on

either angle of attack or propeller disk loading. This is done by

finding the duct derivatives in the presence of the propeller first

Li and then the propeller derivatives in the presence of the duct.

2.1 The Duct in the Presence of the Propeller

The aerodynamic forces and moments on the duct in the presence

of the propeller are found by representing the propeller as a uni-

formly loaded actuator disk. The net duct reaction is expressed
as a thrust force Ta normal force and a pitching

TD(P)' ormlforc

moment about the midchord diameter MD(p) as shown in Figure 1.

L- For a given set of design variables c/D and y/VO (or CT
P (D)

these three components can be written as dimensionless coefficients

in terms of the flight conditions as follows:

D() N D (P ' o 'D

T TD(P) (CTD(

Aqo (T) D (P ' V ' vo (2)

DAq •C>(P o (3)

0 o

Thus there are nine stability derivatives (with respect to ao,

q, and &) for the duct in the presence of the propeller, since V0

is assumed constant. The way in which these are defined will beII
ii!
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illustrated now for the three moment derivatives. But since a .

is not restricted to small values, an a coefficient will be used

rather than an a derivative. Thus, partial differentiation of

(Cm) D(P) with V constant and a - ao - constant', and then I

setting q - d - 0, gives the q and & stability derivatives: i

/ c)D(P -(q D(P)(.Dg ~ (D .a,) (4) -Vi

a Cm) DI (P (Cm D()T() ) (5)

D- D (P TýD

0 Vo, Uo,q'drO

Hence, for small rates of pitching q and plunging 6, the in-

stantaneous duct moment is given by

CmD(P) ( (mD(P) \o9)N -D (P)+ @6 o M/ D(P (

The first term is the static moment coefficient. The static coeffi-

cient and the q derivative are found in the present analysis by

considering the ducted propeller in the pure pitch flight condition,

and the & derivative is estimated independently by use of the

apparent mass concept. For pure pitch, the ducted actuator disk

moves as though it were mounted rigidly to an arm with fixed

radius R as shown in Figure 2. The arm rotates at constant

'Note that a differs from a only for plunging flight
(See Fig. 1)



I •angular velocity q. Both aO and Vo are constant and VO - a

The method of singularities is used to find the velocity distribu-

tion W over the duct surface as induced by all of the bound and

j [shed vorticity for the ducted actuator disk shown in Figure 2. The

moment coefficient for this motion

C oq

is then found by integration of the static pressure (po +P- v 2_W2)

L over the duct surface. Then by setting q - 0 (but holding VO

v constant), one obtains (Cm) D(P) ( 0 , 0, 0). By differentiating

(Cm) D(P) with respect to q as described above, one obtains

(m).D (P)

The total surface velocity distribution W on the duct

during pure pitch is considered to be composed of six parts as

1- shown in Figure 2. That is,

W Wh + w + Wq + Whi + wi Wqi (7)

Ii The first component wh is induced by the actuator disk for no

motion of the duct (i.e., for hovering flight). The second two

1I. components are due to the two components of the duct motion: a

II translational motion VO at ao, which produces w and a rota-

tional q about the midchord duct diameter which produces wq. The

and Wq components include the velocity induced by the duct

wake which is generated in each case.

I'
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It is assumed that the propeller thrust coefficient CT
TP (D)

is sufficiently large to produce a large jet velocity V com-

pared with the lateral component of flight speed. That is,

V >> V sin aO (8)

In this case, the jet extends downstream nearly aligned with the

duct axis as shown in Figure 2 for any combination of the duct

motions. Furthermore, the duct motions, their vorticity distribu-

tions, and the reactions which they produce on the duct are all

additive (See Eq. 6). The propeller vorticity y and the duct wake

vortex filaments drw both lie on the cylindrical surface r - D/2

and are mutually perpendicular (Fig. 2).

The duct wake vortex filaments produce a counter rotating

swirl distribution (Fig. 6). There is no swirl generated directly

by the propeller in the present analysis since it is represented

by an ideal actuator disk. However, the effect of real propeller

slipstream effects, including swirl, is considered qualitatively

in Section 4.2.2.

The bound vorticity distributions on the duct corresponding

to hovering,angle of attack, and pitching, are composed of Yh,

Ta) and Tq, which are calculated with the assumption of two-dimensional

flow over local chordwise strips of the duct for c << D. But

since the vorticity is actually distributed on a ring rather than

a flat plate, there are three additional self-induced axial vel-

ocity components Wh , wa , and w . These are analogous to the
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self-induced axial velocity (or propagation speed) of a ring vortex.

Since the self-induced radial velocity distribution is small for

S> D >> c, it is neglected. In order to make the analysis

tractable, it is found necessary-to approximate the three self-

induced components since it is not feasible to express them analyti-

.I cally (See Appendix D) and to incorporate them into the subsequent

analysis. The approximation cannot be made by simply concentrating

the bound vorticity on the duct into a single ring filament of

strength rh + r + rq since such a ring induces an infinitely

large axial velocity upon itself. The method employed here and in

V Reference 1 is to: (1) average the bound vorticity over the duct

I chord, (2) find the self-induced velocity distribution due to the

"averaged vorticity, and (3) then average the self-induced velocity

over the duct chord and use these values, wh , and w , in the

subsequent analysis. The accuracy of this averaging process is

assessed in Appendix D.

v 2.2 The Propeller in the Presence of the Duct

The stability derivatives for the isolated propeller are de-

I fined just as for the duct for the three components of the net

aerodynamic force Tp, Np, Yp, and for the two components of the

I moment M and N* p which are about propeller diameters. The

interference of the duct on the propeller due to a and q is

found to produce only pitching moments M(D -P)a and M(Dp)q.

SThe thrust interference produced by the duct in steady

axial flight (i.e., for -o 0) is not predicted here since it is

iii
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considered to be part of the initial design process. Thus in the

presence of the duct each component of the propeller reaction

()P(D) is the same as for the isolated propeller ( )p except

for the pitching moment which is given by MP(D) - MP+ MD_.p.

The a and q derivatives are obtained from Reference 5 for

the isolated propeller at small ao. The & derivative and the

duct interference will be estimated in the present analysis.

Although the propeller thrust is generally greater than the duct

thrust, the flight-induced forces and moments on the propeller in

th3 presence of the duct are found to be small compared with those

for the duct for typical conditions except for M(D-P) . There-

fore, a more refined analysis of the propeller reactions does not

appear to be warranted except possibly for the duct interference

moment on the propeller due to pitch, M( . This moment may

be appreciable for isolated ducted propellers, such as in VTOL

applications, but even it is negligible when the ducted propeller

is combined with a long hull, as for a torpedo.
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3. ANALYSIS

3.1 Stability Derivatives of a Duct in the Presence of anIi Actuator Disk

3.1.1 Discussion

The purpose here is to determine the force and moment coef-

ficients and the stability derivatives oi a thin duct of uniform

L• diameter with an actuator disk located in the exit plane (Fig. l(a))

as in Reference 1. (The results are actually valid for any actuator

disk location within the duct as shown in Appendix C.) The coef-

ficients and derivatives here pertain to the aerodynamic force and

moment acting on the duct in the presence of the actuator disk.

The initial assumptions are:

(a) The fluid is inviscid and incompressible, and a velocity

potential represents the actual flow field in which the boundary

- layers are negligibly thin and unseparated.

(b) The chord-to-diameter ratio of the duct c/D is small

1.I enough so that the flow over each chordwise strip is nearly two

dimensional.

(c) The lateral component of flight speed is much smaller

I than the slipstream (or jet) velocity; that is, V >> Vo sin ao

in Figure 2. In this case the slipstream extends nearly axially

I downstream as shown.

S whc(d) The propeller is represented by an ideal actuator disk

which produces a uniform loading or pressure rise Ap over the

Ii disk but no swirl.

(e) The diameter of the slipstream is considered constant

Ii and equal to the duct diameter for the purpose of calculating the
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duct surface velocity W. This assumption is discussed on page 130

of Reference 6 and in Section 4.2.1.

With the above assumptions, the method of singularities is

used in Appendix A to determine the duct surface velocity distribu-

tion W for the pure-pitch flight condition (Fig. 2). The pres-

sure distribution corresponding to W is integrated over the duct

surface to obtain the net force and moment on the duct in Appendix B.

In the present section, we shall find the resulting force and moment

coefficients for the duct in the presence of the actuator disk both

in steady flight at angle of attack and in hovering. Then we shall

find the pitching (q) stability derivatives and finally the plunging

(c) derivatives.

3.1.2 Static (a) coefficients

Let us find the static (a) coefficients of the duct by the

procedure in Section 2, from the results in Appendix B. These

coefficients give the net aerodynamic reaction on the duct when

q - i -0, that is, for steady flow at angle of attack ao.

There is a normal force ND (P) and a pitching moment (MN)D(P)

which are associated with the nonsingular portion of the pressure

distribution, that is, excluding leading-edge suction. The latter,

in turn, gives rise to a thrust force TD(P) and a pitching moment

M)D(P)" We shall now consider these four components in succession.

The general expression for

S( ao 1 0)



corresponding to Equation (1) is given by Equation (B.33) of

- Appendix B. When q - 0, we obtain Equation (B.36). By sub-

stituting Equations (A.53) and (A.77) for wh and w and by

" dropping terms higher than second order in c/D, we find the

static coefficient

Ii c (4r coo a
-aO0 + 471 " - O +--

+ In- -16D i) (2 tn 4D- 5)+ D!] (9)

For the special case of a ring wing at small angle of attack (i.e.,

for y - 0 and ao << 1), this result reduces to that of Refer-

L ence 7.

The general expression for (MN)D(p) is given by Equation (B.35)

and when q - 0 by Equation (B.37). Substituting Equations (A.53)

and (A.77) for wh and , and then retaining only the lowest
hi ia

order terms in c/D, we find

(CN-(a c00) +- 2r cos a sin a (10)
(Cm)D(P)0O'DO 

2  0) 2V0

The duct thrust TD(P) is expressed by Equation (B.41), and

when q - 0 we obtain the thrust coefficient

((",0,0) (In - 2 +•4r (1

~T)D(P) 2\7rD/ c Dc

O MI

t i
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The expression for (MT)D(P) is given in Equation (0.42),

and when q - 0, we find

(( 0 - _C (tn1--- 2 sin aO (12)(mT I(P) (0,0 1 + 2DC

Thus, except for the case of very low disk loading (y/V - 0), we

find that C in Equation (10) is much smaller (higher order in

c/D) than c m in Equation (12). Therefore, we shall take the

total pitching moment on the duct to be equal to the component

arising from leading-edge suction, so that

4 '4 DV(C)P1 (p) (ao, 0,0) C (co 0 ,0)- 0 (n 16D- 2) sin
( (P) 1- D 1 - sin

2D
(13)

3.1.3 Thrust ratio in hovering flight

For hovering flight, the duct thrust is given by Equation

(B.41) with Vo - 0. That is,

TD(p) cD 2 (n 16D - 2) (14)"D(P)-h-.- 2 (14

Also, for hovering flight, application of Bernoulli's equation

far ahead and far behind the propeller disk gives

'Y- V. -F24p/p (15))
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Thus, the actuator-disk loading is given by

-A P W (16)

IIand we find that the thrust ratio for hovering flight is therefore

[ TD(P)h 2c n 16D 2

T D -I
3.1.4 Pitching (q) derivatives

I.. We shall now find the q derivatives of the duct by using

the procedure of Section 2 with the results of Appendix B. Again,

we shall consider in succession the q stability derivatives of

each of the four duct reaction components

ND (P)~ ('N)D (P)' T D(P)~ and ('4T)D(P)

Thus, by differentiating Equation (B.33) with respect to
I. Dq/V , holding a0  and VO constant, we obtain Equation (B.38)

"for (CNC D But if only the two lowest order terms in c/D

are retained, Equation (B.38) reduces to

n 'vc 16D + co

(%CNq)D (p) V-iokD n- I) + coscxO (18)

By the same procedure, Equation (B.35) gives (B.39) and

iwe get

, 2



-14- j

Similarly, if Equation (B.41) is differentiated with respect ]
to Dq/VO holding aO and V0  constant, and if q is then set

equal to zero, we obtain

7TC' sin a

•-T) - 3 (20)
D D3

Differentiating Equation (B.42) in the same way gives [
3 (n 16D -27r- Q-- 2)

mT q)(P) 2%DV3 (1 (21) 1

Now, since C is of higher order in c/D than (CmN)D(p) "1

retention of terms only through second order in c/D gives for

the q derivative of the pitching moment

(Cm. 2V_• (22)
Mq D ( CM ,ýC (n 1 6D 222( KD(P) %D p)

3.1.5 Plunging (6) derivatives

In order to estimate the plunging (a) derivatives of the duct,

we shall use an approximate analysis which is independent of the

foregoing results for a and q and which is based on the appar-

ent mass concept, as mentioned in Section 2. Again, we shall make

use of the initial assumption that c << D and utilize the flat-

plate formulas for each chordwise strip of the duct.

We shall estimate the a derivatives of the duct normal force

and the duct pitching moment, but not of the thrust force. The
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I reason for this is that only the normal force and moment deriva-

tives appear independently in the equations for the natural

Li frequency and damping of a vehicle at small angle of attack.

"The approximate method used to find the duct , derivatives seems

justified by the fact that they are found to represent only about

1• 1 percent of the total damping of a torpedo-like configuration,

to which the static normal-force derivative C of the duct is

Ii actually the major contributor.

"r The plunging stability derivatives of the isolated duct will

be calculated by considering the flight condition illustrated in

Figure l(a) where the duct is situated in a steady free stream at

small angle of attack (a% << 1) and oscillates with a normal

velocity component

V!.. v - v sin vt (23)

and a simultaneous axial velocity component

u M um sin Vt (24)

The oscillations are assumed to be of small amplitude and of low

frequency. In addition, the oscillations are taken to be normal

to V0  with u and v in phase with one another. That is,

u- -v sin a (25)
V

so that V -0, and & is given by

V cos - (26)S• -Vo Cos ao -VO

II
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The instantaneous flow condition corresponds to the free

stream V at a as shown in Figure l(a). The distribution of

bound and trailing vorticity from the duct now consists of two

parts:

(a) The steady-state distribution corresponding to the

instantaneous flow condition (V at a in Section 3.1.2) which

is in phase with velocity v.

(b) A distribution which is in phase with acceleration v.

Within the framework of this analysis, the force and moment

acting on each chordwise strip of the duct correspond with those

on a flat plate in the same orientation performing the same motion.

Now, the force and moment on an oscillating flat plate in a uniform

stream at small angle of attack can be found in Reference 8

(pp. 293-303), and it can be shown that for any combination of

uf and vf at low amplitude and frequency, there are: (1) a

lift force acting at the quarter chord which corresponds with the

instantaneous flow condition (V at a) and which is in phase

with the velocity vf, and (2) a force normal to the plate acting

at its midchord and in phase with acceleration *f. At low fre-

quency the latter force per unit span is approximately given by

the quasi-steady formula

Nf -P (27)

and evidently it does not depend upon either the free-stream condi-

tion or the axial component of acceleration (V, a, or Uf). The

factor (rc 2/4)p is recognized as the apparent mass of a flat
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plate of chord c undergoing normal oscillations 0 f* For stream-

wise oscillations OfI the apparent mass is clearly zero.

Applying the above results to each chordwise strip of the

isolated duct and integrating round the duct, one finds a normal

force acting at the midchord diameter, in phase with -0, which is

given by

2 2 7 2 C 2 DV &P7r C D P'C' . - 0 (28)"D 8 8

Thus, the apparent mass of the duct (for 0 at small a 0 ) is

that of a toroidal volume of fluid with the dimensions shown in

Sketch A.
c

v

D

c
_F2

Sketch A.- Apparent mass of a duct for
lateral oscillation
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Now, as described in Section 2, the plunging derivative can be ]
found by differentiating Equation (28) with respect to Dd/Vo

holding V0  constant. This gives, for a 0 1,

Vc' !;- . (29)
(CN•j "D D

It will be assumed further that the propeller interference has no

effect on NDd so that when aO <«1,

(c) - c) (30)Nd)(P) -(N1 rD2

This seems to be a reasonable approximation since the apparent

mass of the duct is independent of the free stream (Eq. (27)),

and since the corresponding apparent mass of the propeller is

much smaller than that of the duct. Also, since N acts at

the midchord diameter, we find that the corresponding moment

vanishes. That is,

(C) -0 (31)(m D(P)

3.2 Stability Derivatives of an Isolated Propeller

The duct stability derivatives have been calculated in

Section 3.1 by representing the propeller as a uniformly loaded

actuator disk, for which the stability derivatives are all zero.

We expect the actual propeller derivatives to be small compared

with those of the duct, and this will be verified here (with the

exception of C ) for a typical example. To calculate themq
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propeller stability derivatives, we shall first use the analysis

of Reference 5 to calculate the derivatives of a simple paddle-wheel

|" type of isolated propeller (having constant blade pitch and chord).

Then the duct interference on the propeller will be estimated by

approximating the change in flow due to the duct. These effects

II will be added, and finally the resulting propeller derivatives

Ij will be compared with those of the duct.

The analysis of Reference 5 is based upon blade element theory

in which each element operates in a uniform induced flow field

which is found from simple momentum theory. Empirical constants

are introduced such as a "side wash factor" and a "spinner factor,"

and the theory is limited to small angle of attack ao. The theory

gives the a derivatives of either a single or a dual propeller,

L" and the q derivatives of a single propeller.

3.2.1 Static (a) derivatives

- The static derivatives of a single isolated propeller at a

small constant angle of attack a0, (p. 11, Ref. 5) give rise to

a normal force N and a yawing moment N . For dual counter-
a a

rotating propellers, N is increased from 18 to 32 percent for
I a
typical aircraft propellers, and N * is zero. Specific values

a
- have been calculated for the following assumed conditions:

c -blade section lift curve slope- 2r

- blade pitch angle - const

I b -blade chord- const

Ii
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V
S- -2 - advance ratio - 0.1

3CY - propeller solidity (at 3/4 D) - 0.1
3rD (where B - number of blades)

CT - propeller thrust coefficient - 2.17
TP

The following factors, defined in Reference 5, are used:

a - function of T 0.392 for Tc - 0.85

f(a) - function of a - 1.52
k - side-wash factor - 0.4

a

k - spinner factor - 1.14
3I: - 2- v sin

For three values of , the static stability derivatives are given

in Table I for either single or dual propellers (whichever gives

the larger value of the derivative in question).

The approximate values of (CN.)p in Table I are from the

following simple equation (p. 15, Ref. 5) which neglects the

effects of induced velocity

C CN)p a f(a)ksa11 - 0.816 sin • (32)

It can be seen in Table I that this equation gives approximate

values about three times greater than the more refined analysis

for the present case.

3.2.2 Pitching (q) derivatives

Equations for the q derivatives of a single isolated pro-

peller are given on page 13 of Reference 5. The pitching propeller
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develops a side force Yp and a pitching moment Mp, and we obtain

the values in Table II for the same conditions assumed in Section 3.2.1

Ii above.

f The approximate values in Table II are from Equations (49),

Reference 5, which neglect the effects of induced velocity. These

L equations can be written as

(Cyq)p - 4 rr(l + a)a cos • - - 0.33 cos • (33)

. (Cmq) - - 2(1 + a)a a - 0.28 (34)

where a - 0.85 and o - 0.1, as before. It can be seen in Table II

that these equations give approximate values about twice as large

as those from the more refined analysis for the present case.

1. For comparison with Equation (34), the simple blade element

method (used in Ref. 9) was employed to estimate /Cm) for a

paddle-wheel type of propeller (• - const, b - const, c I 2r).

This method assumes a very low advance ratio (uD >> V ), neglects

induced flow effects, and gives

(C Mq - -2V G w( WD (35)

1. For the previously assumed conditions, we have

I aQ &)= 1 (36)

S so that Equation (35) gives

( Cmq)p 0.29 (37)
IsIquto

&l
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This result is in good agreement with Equation (34). This latter I
method, however, gives no side force.

3.2.3 Plunging (d) derivatives i
The (6) derivative of a plunging isolated propeller will be

estimated here by use of the apparent mass method, applying the

flat-plate result given by Equation (27) to each blade element.

Consider one pair of propeller blades, shown in Sketch B, having

constant chord b, constant pitch P, and located at azimuth I
angle 0. If the propeller oscillates laterally (<7 at low fre- I
quency and amplitude) then the component of 0 normal to the

blade surface is <7 sin 0 cos 0 and there is a force in phase

with <7 acting at the center of each blade surface and normal to

it (Eq. (27)). Thus, the total force on each blade is

Nf-b2 Dp sin sin

N

Nf f

End views of blades

Sketch B.- Oscillating propeller nomenclature.
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V
I. Hence, the net force on the blade pair normal to the duct axis is

simply (Sketch B)

i •~~~~b!D 29sn i•• (9N -2N sin sin psin sin2  (39)

f f
For B/2 pairs of blades, we have the total normal force on the

I propeller (integrated over c to give the time average value)

Np- -N B 2Bb2D (sin2 P)pO (40)2 8

II When aO << 1 such that O = - ¢/Vo, differentiating with respect

to DA/V 0  (holding V constant) gives

02F 2( CN)p - + vB D•) sin2 • (41)

3.3 Interference of Duct on Propeller

I Here we shall estimate the aerodynamic force generated by the

duct on the propeller blades. We shall approximate this effect

"by first estimating the velocity profiles induced by the duct at

the propeller plane and then estimating the effect produced on

the propeller blade elements. For configurations which include a

long hull, the total propeller reactions including interference

will be relatively unimportant (see Section 3.5). For the isolated

ducted propeller (Section 3.4), the propeller pitching moment due

to pitch M(Dp) is the only interference effect which is not

small compared with the duct reaction itself. For configurations

L where this is significant (e.g., flying platforms and VTOL designs),

the present estimate of M(Dp) should be considered a first
! q
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approximation to the first step of an iterative process. That is,

duct interference causes the propeller disk loading to be non-

uniform, which changes the bound vorticity and net reaction on

the duct. This, in turn, changes the propeller disk loading, and

so on. This process is beyond the scope of the present study.

Here the duct interference is considered to be due only to

the axial velocity component induced by the duct at the propeller

location. The effects of the radial and tangential velocity com-

ponents induced by the duct are probably small and are not considered.

The duct interference on the propeller is due to three sources which

will be estimated in succession below: (1) the bound vorticity Yh'

(2) the bound vorticity y due to the free stream V0  at angle

of attack a0, and (3) the bound vorticity yq due to the pitching

motion. It can be seen in Figure 2 that the trailing vortex fila-

ments shed from the duct do not directly induce an axial component

of velocity at the propeller, since they are aligned with the duct

axis. However, they do induce an upwash on the duct and thereby

influence the bound vorticity ya and yq which in turn causes

duct interference upon the propeller.

Interference effects for the plunging (6) motion cannot be

found with the apparent mass method employed here. However, with

a long hull (Section 3.5), the apparent mass of the ducted propeller

is found to give a negligibly small force and moment on the hull

(Tables V and VI). For lateral (C") oscillations of an isolated

ducted propeller, the apparent mass of the propeller is much smaller

than that of the duct (Section 3.4). Therefore, interference is

probably unimportant here also.
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3.3.1 Velocity profiles induced by Yh + Y

Let us consider the axial velocity profiles (u + u) induced

within the duct by Yh + Y' We have already found the axial velocity

at the inner duct surface; it is wh + whi where wh is given by

Equations (A.15) plus (A.47) and wh is given by Equations (D.5)
T 1i

through (D.7), evaluated on page D-4.

At points away from the duct surface, the elementary velocity

du h induced by the bound vorticity on each ring element of the

duct is given by the results on page 305 of Reference 6. The vor-

ticity on each ring element can be found from Equation (A.50) in

terms of y. Combining these results and summing over the duct

surface, we obtain the following expression for the total velocity

L induced (at r, 0) by the duct bound vorticity 'h (at s').
Ii

v ( D 2 tan ic sin e' + Or - el) sin e'
2 J 2

r/R - ) E(k)o R

21 + /R 2+L- 1) ) (2

where

2 - (COS2  e - 2 cos e COS + COS 2 l') (43)

[ k2 . 4((D2 /c 2 )r/R (44)
cos -2 e 2 cos e cos e,+Cos2 e, +- + 1

I R

II
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For various radial locations (r < 0.8R), Equation (42) was evaluated

on the Vidya IBM 1620.

The ratio u /,y for the axial velocity component u,( induced

by a vortex cylinder of strength y can be obtained directly from

Table 15 on page 328 of Reference 6. The combined dimensionless

axial velocity profiles (uyh + uy)/y induced by Yh + y as found

by the procedure described above are plotted in Figure 3(a) for

three axial stations in a duct with c - 0.2D and with the pro-

peller in the exit plane. These profiles do not depend upon the

location of the propeller in the duct if it is represented as an

actuator disk (see Appendix C). Therefore, the profiles show the

individual velocity components uyh and uT - y/2 at three alter-

nate propeller locations within the duct. |

The results of this section (Fig. 3(a)) show that 7h and y

induce a nearly constant axial velocity at the propeller which

reduces the effective angle of attack of the free stream (a as
0

seen by the propeller) and causes the blade pitch • (or speed w)

to be higher for a fixed thrust coefficient CT only the effect
TP (D).

of Yh is directly due to the duct since y is shed by the propeller.

However, the effect of both Yh and y are considered here to be a

part of the initial propeller design problem rather than thrust

force interference.

3.3.2 Interference produced by 7'

Let us now consider the axial velocity u induced by 'y.

The axial velocity induced at the inner duct surface by y a can

be found from wa + w a. Thus, Equations (A.66) and (D.12) give2i
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22 tan • + In'1 G (45)

It can be seen (Eq. (A.64)) that r. is proportional to cos o.

Now, the radial variation of u,, will be estimated near the

center line of the duct by considering r. to be concentrated at

a single ring vortex. For small values of c/D and r/R, this

approximation yields accurate values of u . We can therefore

1 •write (using pp. 305 to 307 of Ref. 6)

ar

-k (R.L1 - coo(0 0) + 1 .- R') cos 0' dO'
UT 2rrD ~ A2~/2

Ii • 2 + ,R 2 - 2R ' + 1 + 2R' [i - CO O( O - 0- )] j
(46)

I. where R' - r/R.

Integration of Equation (46), by use of Equation (A.54) and

the results on page 306, Reference 6, gives

u 2k (3k 2 - 4)K + (4 - k 2 )E
Ua 2irD fR-'kL

4' E - 2 (47)

In the plane of the vortex ring (R - 0), we obtain

k2 . 4R' (48)(IR' + 1)2

i I
!I
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and ]
A'IP -1 *

2QD - - 4)- 4)K + (4 - k2 )E + 2 R 2 +_ E - 2 _ 1 K]
r. u- C 2R' LRO- R+l

(49) 1
Thus, evaluation of Equation (49) gives the following variation of

(27rD/F a)U over the propeller disk. I

R' ~ 2irD
R r.~ uYa

0 0

1/10 +0.06 "

1/4 + .35

1/2 +1.96

These values and those from Equation (45) for c - 0.2D are

plotted in Figure 3(b). These profiles, when added to those in

Figure 3(a) give the duct-induced velocity distribution over the

propeller disk at angle of attack.

We shall now estimate the propeller interference produced by

u by making the rough approximation that the velocity profilesTa
are linear with r/R, as shown by the dashed lines in Figure 3 (b).

We shall see later that the final results are insensitive to this

approximation. Thus, the assumed velocity profile is from Equation (45)

' C >Sr-' k 0c2 La e 6 I•Cos• (50)
u - R 2D c tan- + In c(5

2'R 2r c 1)oR
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We shall also assume that the propeller consists of B blades of

constant chord b and that its peripheral speed cr is much

L larger than the axial velocity u . The angle of attack on a

pblade element changes by an amount (-uy /ar), which causes a

pitching moment (but no net force) on each pair of blades. The

elementary pitching moment on a pair of blades is given by

dM(. 4 p) _ 2b 2L (wr) 2 r cos _ dr (51)

(D )a 2 l

We shall assume here that c - 2r as before. Then

dM =-b L (cos 2 c) tanI + In -6 _G 1, ddS(D-• P) C, 2 4 c UR R

(52)

where e corresponds to the axial location of the propeller in

the duct. Integration gives the moment per pair of blades as

M(D-P) 32 (cos 2) (2 2 tan- +'In 16_D- G (53)
MDP)a \2C 2 c

Thus, for B/2 pairs of blades, the total pitching moment (time

averaged) on the propeller due to uY is

2 7r

M(D--.P) a 2~ T~ f 'jd-
0

Bb(2DDtk n + I 16D G (54)
"- 128 c 2tan -+n c (4
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Differentiating with respect to a and using Equation (A.64)

for rk, we find that the interference of the duct on the pro-

peller produces the following interference pitching moment.

3 2- am a2DP 32(1 22 tan -+ In -- - G) L! cos coz

(55)

If, in lieu of Equation (50), we had assumed that u~ - (uy) = const,

integration over r would have given a result only 4/3 times larger. i

Thus, the interference effect is quite insensitive to the profile

shape. For small angles of attack (a0 << 1), we find that the

ratio of interference to duct moment (Eq. (13) and (55)) is given by

CICm a)D--P 3va (aD )Vo 2 D1 tan _ n 6 Gi
aD~ P ( \ _ c 2 c 1 (56)

(C) 128 V l t 20 -In 16D -2

where G. = 2, 3, or 4 for the propeller located at the duct lead-

ing edge, midchord, or trailing edge, respectively (see Eq. (D.12)).

Thus, Cm)D-P is probably generally small compared with (Cma)D(P)

except for propeller locations near the duct leading edge.

3.3.3 Interference produced by yq

The interference from the duct bound vorticity yq will be

estimated now by the same technique used above for y a" At the

inner duct surface, the axial velocity induced by yq is

(UTq) - wq + wqi. As above, we shall assume that the axial

velocity profile is linear with radius, so that, using Equations

(A.88), (A.90), (A.94), (D.16), (D.17), and (D.18), we find

?I
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I"r qc1/ D D2

[m( __sin e+•4tWly q (wq wq R 8D C c 2

tan e + G Cos (57)

2D

where G2  is evaluated on page D-7.

By analogy with Equations (50) and (54), it can be seen that

the pitching moment on the propeller due to 1; q is

2

(58)

or

(7Cr3. C2 D y 'LD. sin e+4 Ri--- tan-+ G2)(mqý -_p 128 D 2 V c• si 2 + 4S 2- 7

,- 2D

L (59)

Thus, using Equation (22) for the duct moment gives the following

moment ratio for pitching:

(Cm~q)(D-P) 3 3v; 1 0 >'D VO (4 D sin 6

C D(P) n1 ) a- ý
64 n 16D(Cmq)iDpc

+ 4 v-- tan 2 012 2 +2-)• (60)
2D

In Section 3.4.2 it will be shown that this ratio is large for-the

conditions assumed there. The tan(6/2) term in Equations (60)

and (57) is comparatively small except near the leading edge of the

duct where it dominates. This causes the interference moment to

reverse sign with variation of propeller location e.
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Both T and yq and the axial velocity profiles induced by

them are all proportional to cos 0. This causes only pitching

moments on the propeller due to a or q interference so that

NP(D) - Np and YP(D) - Y P" The theoretical pitching moments are

infinitely large when the propeller is at the duct leading edge

because of the mathematical singularity there which invalidates the

assumption that the angle of attack on the propeller blade element

changes by only a small amount due to duct interference.

3.4 Comparison of Duct and Propeller Reactions for an Isolated
Ducted Propeller

The static coefficients and stability derivatives of the duct

and propeller as determined above will now be compared for a spe-

cific configuration in order to illustrate their relative magnitudes

and overall importance for an isolated ducted propeller (and hence

for certain VTOL configurations). It is found that all of the

propeller reactions are small compared with the duct reactions

except the propeller pitching moment due to pitching. In Section

3.5.4, it is shown that even this component is negligible when the

ducted propeller is combined with a long hull. It should be noted,

however, that two of the reaction components for an isolated propel-

ler are perpendicular to the motion (a yawing moment due to ao

and a side force due to q). The results given below are for small

angles of attack, an aircraft type propeller which is moderately

loaded, and a duct with c - 0.2D. Duct interference on the pro-

peller causes only pitching moments with a and 0 (Section 3.3).

The duct moments are about its midchord diameter and the propeller
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Imoments are about its own diameter. The propeller conditions

assumed for Section 3.2 are also applied here; for example,

V
vo- - 1 and C - 2.17. From Equation (170), we can evaluateD TDP(D)

.y/V in terms of C to find that these conditions lead toI P)

I Y/V° - 0.78.

3.4.1 Static (a) derivatives

f First, consider the normal force derivatives of the duct and

propeller at small angle of attack ao. For the duct in the

presence of an actuator disk (Eq. (9) with c - 0.2D), we have

iD - 1.91 + 0.845v 257 (61)"N a D(P) o

I. For the propeller (from Table I)

"C P(D) - 0.05, 0.10, 0.16 for 1 - 100, 200, 300 (62)!_\ a P] (D)

Thus, the normal force on the duct is much larger than on the

propeller.

Now, let us compare the pitching moments on the duct and

propeller and the yawing moment on a single propeller. The duct

moment derivative is (Eq. (13)).

1. ( -" 1.45 - 1.13 (63)
"\ m  D(P) V0

I For small values of c/D we shall assume that the axes of
pitch and moment for the duct and propeller coincide.i

|:E
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From Table I, the propeller yawing moment derivative is

(Cn*) -0.4 for 10 < P < 300 for a single propeller

- 0 for a dual propeller

The propeller pitching moment due to duct interference is given

by Equation (56) as

¢Cm
" , a) (D-P) 0.451, 0.015 (65)

m )D(P)

with the propeller located at the leading edge, midchord, and

trailing edge of the duct, respectively. Thus, the propeller

interference moment is smaller than the duct moment unless the

propeller is located near the leading edge of the duct.

The thrust ratio from Equation (11) and with C - 2.17 is

TP(D)
CTD(P) " 0.20 (66)

CTp D

so that the duct carries only 16.7 percent of the total thrust.

3.4.2 Pitching (q) derivatives

The pitching derivatives will now be compared at aO a 0.

The duct normal force derivative is from Equation (18)

CNq " 0.675 V-" + 0.126 - 0.65 (67)( q D (P) V 0
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The side force derivative of a single propeller is from Table II

(C~~p() -- 0.15 for -10 0

i - -0.12 for • - 30 (68)

Thus, the duct normal force is about five times larger than the

[ side force on the propeller.

Now let us compare the pitching moment on the duct and single

1- propeller. For the duct (Eq. (22)) we have

m ) + 0.0376 " - 0.029 (69)

1. For the propeller (Table II)

j-(Cmq)p - -0.17 for 10 < 0 < 30° (70)

SBut due to duct interference on the propeller (Eq. (60)), we get

(C>g),,-
!)- - + c, -12.0, -10.2 (71)

(Cmq)D (P)

for leading-edge, midchord, and trailing-edge propeller locations,

respectively. Thus, the net propeller pitching moment reverses

sign with propeller position as mentioned below (Eq. (60)). It

I.. is generally large compared with that of the duct and it is dom-

inated by duct-propeller interference.

3.4.3 Plunging (6) derivatives

1!. For the duct normal force the plunging derivative is from

Equation (30)
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c r c2 - 0.13 (72)N ~t 6)DoP)D
This force acts at the duct midchord, so that mD(P) -

The plunging derivative of the propeller normal force is given

by Equation (41). Previously, we have assumed

4Bb . 1 (73)
S31" 10

Here, we shall also assume a three-bladed propeller (B - 3) so

that D - 12.7b. Then we have

CN&P(D) - 0.058 sin2 P, and (Cm.) P(D) -0 (74)

Thus, the apparent mass of the propeller is considerably smaller

than that of the duct, and the interference effect of the duct on

the propeller is probably negligible as assumed in Section 3.3.

3.4.4 Summary

Specific calculations have been made for a moderately loaded,

aircraft type, ducted propeller of low solidity. The propeller

could be either single or dual for a, but only single for q.

The results of this section indicate that for an isolated

ducted propeller of this type (and hence for certain VTOL con-

figurations), all of the forces and moments on the duct are larger

than on the propeller except for (1) the pitching moment due to

pitch, and (2) the thrust force.

The motion studied consisted of small rates of pitching and

plunging about a straight-line flight path aligned with the duct
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IV axis because of the analytical restrictions used to obtain the ductI-.
plunging derivatives and all of the propeller stability derivatives.

I. The midchord duct diameter was taken as the axis of pitching and the

center of duct moments. The propeller pitching and moments were

taken about its own diameter. The duct and propeller axes coincide

~ for c << D. It should be borne in mind that two of the propeller

reaction components were perpendicular to their duct counterparts

1 (a yawing moment due to a and a side force due to q).

The duct interference on the propeller markedly increased its

stabilizing moment for pitching if it was not located near the duct

leading edge. This can be significant for VTOL-type applications.

3.5 Calculative Example of a Torpedo-Like Configuration

In this section the foregoing results will be employed to

1 estimate the dynamic stability of a complete torpedo-like configu-

ration. The purpose is to determine the relative importance of the

* ducted propeller derivatives for this type of vehicle.

We shall consider small rates of pitching and plunging about

an equilibrium condition of steady axial flight with the thrust of

the ducted propeller equal and opposite to the hull drag. It is

found that this condition requires a very lightly loaded propeller

I. for the assumed configuration (Fig. 4) where the propeller diam-

eter is taken equal to the maximum hull diameter. With this assump-

-- tion, the reference areas (A) of the hull and ducted propeller

I derivatives are the same so that they are directly comparable. The

hull shape will be chosen for mathematical simplicity rather than

j I from practical considerations; however, for the present purpose!4

LI
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it is probably sufficiently representative of actual hull shapes.

For purposes of the present stability analysis, the hull and ducted

propeller will be assumed to be isolated from one another (i.e.,

no duct-hull interference), but thrust equilibrium will be imposed.

This assumption will be examined qualitatively at the end of the

section.

The method of approach will be to estimate first the isolated

hull stability derivatives about its centroid by use of slender

body theory and then to calculate the isolated ducted propeller

derivatives about the hull centroid by use of the previous analysis.

The static stability of the configuration will be examined, and

sufficient fins will be added to the duct to provide a 10 percent

margin of static stability (neglecting aspect ratio and interfer-

ence effects). Finally, the dynamic stability of the entire con-

figuration will be considered by shifting the axis of pitch and

center of moments from the centroid to the assumed location of the

center of gravity of the hull(O.4L in Fig. 4) Interference between

the hull and ducted propeller will then be considered briefly in

order to furnish a better understanding of the results obtained.

3.5.1 Isolated hull derivatives about hull centroid

The stability derivatives of an isolated slender hull (Fig. 5)

will be estimated by using slender body theory and by assuming that

the hull boundary layer remains attached and axially symmetric.

The hull probably actually oscillates within its boundary layer
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to some extent. Thus at small angle of attack the latter assump-

tion probably leads to overestimation of the effect of an attached

I boundary layer and the hull stability derivatives. However, at

higher angles of attack, which are not considered here, the boundary

layer actually separates, and the normal force on the hull becomes

~ much greater than indicated by the above method. The total drag on

the hull will be taken equal to the friction drag, and its form

I drag will be neglected. This seems justified for the present case

F where the boundary layer is found to be thin. This condition is

believed to be generally true for submerged torpedoes which have

II little wave drag.

Static (a) Derivatives

1.. The normal force on a slender hull at small angle of attack is

v- given by Reference 10 (page 68)

NH N 2irqorL2a (75)

where r is the base radius. Also, the center of pressure is at; L

(Ref. 10)

a = L - Vol (76)
27rr L

I where Vol is the volume of the body and L is its length (Fig. 5).

v For a slender body with a pointed base at small angle of attack, it

is assumed that the effective base radius rL is simply 6L*I the

~ displacement thickness of the hull boundary layer at the base
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(See Ref. 10, page 68). If the boundary layer is axially sym-

metric, then the friction drag of the body is given by 2r9L2q0

where 8L is the momentum thickness of the boundary layer at the

base. Thus, if we neglect form drag (assuming the boundary layer

be thin), then the total drag is equal to the friction drag and

we have

X - 2 rLe2q (77)

It is assumed here that the hull is a body of revolution (Fig. 5)

for which

(1 - Hi- (78)

m

and the hull volume is from Appendix E (Eq.(E.7) with 6L* - 0)

Vol _ 8 2L (79)

Consequently, from the above equations, the axial and normal forces

of the hull are given by

X 2~

- 2 - L(80)
7qor m2  rm 2

2a -% (81)

lrqorm rm•

and, for no boundary-layer volume, the center of pressure is at

a M 1 8rm (82)L 156L, *2
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[ The boundary layer profile over the axisymmetric hull will be taken

equal to that given by the 1/7-power law (p. 432, Ref. 11) for a

turbulent boundary layer over a flat plate of length L in uniform

L two-dimensional flow. Thus, at the hull base (Fig. 5), the

boundary-layer profile is given by

u__ /(83)

IVo
for which (Ref. 11)

6L* - 1.29 -L 0.37 L (ReL) (84)

where the length Reynolds number of the hull is ReL - (PV L)/p.

For a hull moving through water with kinematic viscosity Wp -

101-5 (ft 2 /sec), we can write

R 105VoL (85)Ie L o

"Now, if L - 10 ft and VO - 40(ft/sec), we have ReL - 4x107 .

Thus, the hull boundary layer is mostly turbulent (as assumed),

since transition to turbulence occurs at a length Reynolds number

I of approximately 2x108 for a flat plate3 (or at 5 percent of the

hull length). Substitution of the assumed values (Fig. 4) into

Equation (84) gives

6 - 0.111 ft - 1.34 in. (86)

8L - 0.0865 ft (87)

T 3Kuethe, A. M. and Schetzer, J. D.: Foundations of Aerodynamics.
I J. Wiley and Sons, Inc., New York, p. 283.I' !

ii
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and the drag coefficient and normal force derivative of the hull

are, from Equations (80) and (81),

CX- 0.0600 (88)

\.N• N 0.0994 (89)

Neglecting the boundary-layer volume, we have from Equation (82)

a= - 9.78 (90)

However, with the displacement thickness of the assumed hull

boundary layer included, the total volume of hull and boundary

layer from Equation E.9 in Appendix E is given by

Vol* - 0.709(rrm 2L) (91)

and we find that

a*/L - -13.6 (92)

We shall use this value to obtain the pitching moment derivative

about the hull centroid. Thus (see Fig. 5) we have
N

/CmI H_..L-- a*) '- 0.0994(10 + 13.6 x 20) - 28.0a) H Aqoao 2 D

(93)

Pitching (q) derivatives

The stability derivatives for the hull pitching about its

centroid are given by the following formulas, taken from p. 371 of

Reference 10:
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N(c,\E N 2X -2 L (94)
CNq) H T 2 q 2 '0 22

mrm 0o
Iand

(95)

L where A and C are apparent mass coefficients defined in
22 22

Ii Reference 10, and the different reference lengths appearing in the

above formulas require conversion to the present system of nomen-

S clature. Both of the above derivatives are zero for the assumed

hull shape if we neglect the boundary-layer thickness. With the

1rH

- previous assumptions regarding the boundary layer, the above formulas

" become (with r.L " 5"L and C* - -0.144 from Appendix E, Eq. (E.13)SL 2 222

m

(m' - 0.050 + 0.576 - 0.526 (97)

The above q derivatives for the hull are due entirely to the

I boundary layer. Now, converting to the present system of nomen-

clature, we obtain

Ii (CNq) 2- 0.0990 - .9 (98)No 2

I(C mq )H - 0.526 L7 - 0526 (99)

Th bv eiaie o hehl1r u nieyt h
bonaylyr ocovrigt h rsetsse fnmn



-44-

Plungina (6) Derivatives

The plunging (6) stability derivatives for the normal force

NH and pitching moment M'H about the centroid of the isolated

hull are, from pages 369 and 374 of Reference 10,

N lia 2V \ r 2  dx( 00
CN6) H Hq 2o -&) 4B 2 4 r d (00)

m 0 m

and

MCI H M H 1/2Vo f) C =4 rH2 xH dxHr( 01

Sr2o 22 2 L
(C0 rm 0 L f

where NH (Fig. 5) is opposite in sign from Z of Reference 10.

For the assumed hull shape (neglecting the displacement thickness

of the boundary layer), the above formulas become

(CN) 4 Vol W 2.13 (102)

(•C 0 (103)

Now, approximating the effect of the boundary layer as before the

effective value of B is22

B* Vol* M 0.709 (104)
22 r 2L

and the effective value of C from Equation E.13 in Appendix
22

E is
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-C* " -0.144 (105)

Therefore, Equations (100) and (101) for the hull with boundary

ii layer become

C N " 2.84 (106)

I (C) C -0.576 (107)

J Thus, for pure plunging motion, all of the moment and a small part

of the normal force on the hull are due to its boundary layer. Now,

converting to the present system of nomenclature, we obtain for

derivatives of the hull with boundary layer

C - 2.84 L - 14.2 (108)

C - 576( 2 -57.6 (109)

The above results for the hull are summarized in Table V.

3.5.2 Isolated ducted-propeller derivatives about the hull centroid

Here we shall determine the derivatives of the ducted propeller

mounted at the base of the hull in Figure 4 by use of the results

of Section 3. In order to do this, we must assume that the ducted

propeller is isolated from the hull but is in thrust equilibrium

with it. That is, we shall neglect all interference between the

Shull and ducted propeller, including the effect of the hull boundary

layer flowing into the ducted propeller. Neglecting this latter

en

efetiipoal jsiidsneth ipacmn hikeso
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the boundary layer at the hull base was found to be 1.34 inches,

which is reasonably small compared with the assumed duct radius

of 6 inches.

We shall assume that the propeller is located toward the rear

of the duct, so that the duct interference on the propeller from

q is not large and destabilizing. (See Eq. (71))

Thrust Equilibrium

The propeller disk loading is from Equation (170) with ao = 0

CT -1ý - (110)Tp (D) VO 2 \'V

also, from Equation (11), we find that the duct thrust (for a -0

0 and c - 0.2D) is

T - 0.724 TTD(P) 1 + 2(V0 /,Y) P(D) (111)

Thus, the total thrust of the ducted propeller is given by

C - TP(D) + TD(P) - 1.724 Z + 2 (112)
TD(P) Aqo V0  VO

For thrust equilibrium of the entire vehicle, we have TD(p) +

TP(D) - X. Using Equation (88) for the drag coefficient of the

hull, we obtain

Cx - - 1.724 •- + 2 - 0.060 (113)
Aq o V ( Vo3

0
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so that

- 0.050 (114)II V0
Thus, for the assumed configuration, the slipstream velocity V

I is only 5 percent greater than the flight speed V and the
0

SI propeller disk loading is low. We shall now determine the stabil-

ity derivatives of the isolated ducted propeller about the hull

centroid for this case, namely ao - 0, c - 0.2D, and y 0.05 Vo.

Static (a) Derivatives

The normal force and pitching moment derivatives of the duct

I are found from (Eqs. (9) and (13)) to be

( •C>• - 1.91 + 0.845-T- - 1.95 (115)SD(P) Vo0

( N )- 1.4 5 0.0725 (116)
S)D(P) V0

The above pitching moment is about the midchord duct diameter, so

that the moment about the centroid of the hull due to the duct

(Fig. 4) is given by

L"D (P)ii M'D(P) " MD(P) - 2
a a

0. Thus we find that

(C mc,,) 0.07 -19.5 --19.4 (118)\ma~iD(P)

(I

1'
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where the first small term is the duct moment about its own center

and the second is the moment about the hull centroid due to the

duct normal force.

The duct a derivatives are listed in Table III together

with the propeller derivatives estimated from the results of Section

3.4.1 for either a dual or single aircraft type propeller located

near the rear of the duct with y - 0.05 V0 . It can be seen that

the normal force on the propeller is much smaller than on the duct

and that the pitching moment about the hull centroid due to the

propeller is much smaller than that due to the duct. It should be

noted, however, that there is a smaller yawing moment on the

propeller which is perpendicular to the duct moment.

Pitching (M) Derivatives

The pitching derivatives of the duct for rotation about the

hull centroid are (from Eqs. (9) and (18)):

0.675 -1- + 0.126 + .91 + 0.845 9.91
N' q) D(P) Vo0Vol Dq

(119)

and from Equations (13) and (22)

( q N) - 0.0376 ' + 0.0725 ( q0) " 0.364 (120)

The last term in each expression is due to the induced angle of

attack which is introduced at the ducted propeller by rotation

about the hull centroid,



II
-49-

qo2V (121)
CO'M2V 0

The pitching moment about the centroid of the hull (denoted

by a prime) due to the duct is3 - L

MD(p) MD(P) D (122)
q q q

so that

m q)D(P) 0.364 - 99.1 - -98.7 (123)

I Note that the duct moment about its own center MD(p) is negli-
q

gible, just as was MD(p)
a

The duct q derivatives are listed in Table IV for comparison

with the propeller derivatives as estimated from the results of

Section 3.4.2, for an aircraft type propeller located near the rear

1.. of the duct, with y - 0.05 Vo0

i [It can be seen that the forces and moments acting at the hull

centroid due to the propeller are small compared with those due to

I" the duct. It should be noted, however, that there is a somewhat

smaller side force and yawing moment on the propeller which are

" perpendicular to the pitching motion.

The above results show that the q damping of the ducted pro-

peller is due almost entirely to the duct normal force arising from

I. rotation about the hull centroid. Equations (119), (120), and (122)

show that the disk loading has a small effect on pitch damping about

the hull centroid for the present example, even for high disk loading.

Plunqing (6) Derivatives

For the duct, the net hydrodynamic reaction due to & is a

normal force acting through the midchord plane, and from Equations

!I
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(30) and (31) we obtain
2

(CN) D 0. 126 (124)1
OD(P)

and

(Cm)D - 0 (125)

The pitching moment about the hull centroid due to the duct is

then

m- L N (126)D(P). D(P)a

and the corresponding stability derivative is

Cm) D -(L (0.126) - -1.26 (127)

From the results of Section 3.4.3, (Eq. (72) and (74)) the

estimated 4 reaction from the apparent mass of the propeller is

negligibly small compared with that of the duct.

3.5.3 Comparison of isolated hull derivatives and isolated ducted
propeller derivatives about hull centroid

The stability derivatives which have been obtained for the

hull and ducted propeller about the hull centroid are summarized

in Table V for comparison. It should be recalled that these

results were obtained for the configuration in Figure 4, and for

small oscillations from axial flight at low frequency as assumed

in the 6 analysis. The hull and ducted propeller are con-

sidered isolated from one another but are in thrust equilibrium.

An aircraft-type propeller is located near the duct exit
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I plane. The hull boundary layer is assumed to be attached

and axially symmetric.

The following conclusions are drawn from Table V and the

foregoing analysis.

(1) The q damping moment about the hull centroid (-Cmq')

i from the propeller is small compared with that due to the duct,

even though the propeller moment about its own center was compar-

Si itively large.

(2) The upwash over the duct arising from the q motion

causes a stabilizing moment about the hull centroid which is greater

than the destabilizing moment from t1v hull boundary layer.

(3) The & damping (-Cm.) is due mainly to the apparent

mass of the hull boundary layer.II
(4) Both Cm' and C for the hull are due entirely to

its boundary layer for a hull with a pointed base. Since these

Si damping components are comparatively large, refinement of the

present analysis is needed. Both of these components are probably

over-estimated by the present analysis for small q and a motions

of the hull, since the analysis assumes that the hull boundary

layer remains axially symmetric.

(5) For a torpedo-like configuration, all of the propeller

forces and moments (except thrust) are small compared with those

I of the duct. However, some of the propeller reactions are perpen-

dicular to the motion which causes them. This is not true of the

i duct.
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3.5.4 Static stability of torpedo-like configuration

Before we can make a dynamic stability analysis of a complete

torpedo-like configuration, we must insure that the vehicle is

trimmed and is statically stable. For this purpose we shall now

add fins to the configuration (Fig. 4) and determine the static

derivatives of the entire configuration consisting of a hull,

ducted propeller, and fin. We shall not consider the comparatively

small propeller forces and moments (Table III). The only interfer-

ence effect which is to be included is propeller interference on

the duct, so that the total normal force and pitching moment on

the entire configuration are given by

NDPF N + ND(P) + NF' (128)

and

MHDPF N""+ MD(p)" + MF" (129)

The double prime superscript on the moment indicates that it is

about the center of gravity of the hull. 4 We shall use the moment

transfer equations of page 400, Reference 10 to shift the centers

of moments and pitch from the hull centroid (previously considered)

to the hull center of gravity. The normal force derivatives due to

a and 1 are not affected by this transfer and can be taken

directly from Table V. All the other stability derivatives, how-

ever, are affected.

4 1t is assumed that the center of gravity of the hull is the same
as that of the complete vehicle.
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I The center of gravity of the entire configuration is assumed

to be at 0.4L (Fig. 4). Using Table V, we find that the center of

L pressure of the hull and duct is located a distance xc.p. ahead

of the hull centroid as given by

M' + M'
x C.. H D(P) (28.0 - 19.4)D/2L 0.21

LNH 0.10 + 1.95

(130)

Thus the center of pressure is located 0.29L from the nose in

Figure 4 and is ahead of the assumed center of gravity. Since this

results in static instability, we must add fins to make the config-

uration statically stable. We shall add fins near the base of the

V• hull (Fig. 4) which are sufficiently large to place the center ofI.
pressure at the hull centroid (0.5L) and thereby obtain a "10-

percent static margin." We shall use a fin with chord c and ex-

posed span S, such that the net moment about the hull centroid is

zero. That is,

M M' + M' -0 (131)F H D(P)a

Thus, using Table V, we find that
MI D

M'F - 8.6 Aqoa (132)

!I.
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Now we shall neglect interference effects on the fin, assume that =

its lift curve slope is 2r and make no correction for its aspect

ratio. Then we can write the normal force on the fin as

NF 2 Aqo-o - D0.86 -qoao 2rcSqoa
aP L L 4~ ~~ 00

(133)

Thus, if the fin chord is taken equal to the duct chord (c - 0.2D),

we find that the total required exposed fin span is

S - 0.537 D (134)

With this fin added for static stability, the static a de-

rivatives about the hull center of gravity (0.4L) as obtained from

Table V using the transfer Equations (10-119) of Reference 10 are given

in Table VI.

3.5.5 Dynamic stability of complete configuration with no inter-

ference between hull and ducted propeller

The dynamic stability derivatives for the hull and duct about

the vehicle center of gravity can be found by transferring their de-

rivatives about the centroid (Table V) using Equations (10-119) of

Reference 10. The results are given in Table VI.

For the fin, we shall neglect the moment about its own axis,

any interference effects, and aspect ratio corrections. The upwash

over this idealized fin due to pitching about the hull center of

gravity produces the following derivatives:
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(N) F 2C- 27r j" 5.1( (135)

/. •--)•") -61.9 (136)

II The normal force and moment on the fin due to rotation about its

own axis are comparatively small and have been neglected here.

Due to 6, there is a normal force on the fin (Section 3.6)

I given by Equation (166)

SNFD P 2 E - 0.298 (137)ND ~~ v D

r
thus we find that

j CM F - 0.298 (0.126) - 0.038 (138)

" ('u)F 0.298(-1.51) - -0.45 (139)

The resulting stability derivatives about the hull center of gravi-

ty with ducted propeller and fins are tabulated in Table VI for

the entire torpedo-like configuration.

The following comments should be made concerning the results

summarized in Table VI:

1 (1) For the hull, both the stabilizing & moment and the

r destabilizing q moment are due entirely to its boundary layer,

which has been assumed to remain axially symmetric. For the small

I oscillations from steady axial flight considered here, these

.1
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moments are probably overestimated by this assumption, since the

boundary layer oscillation will actually differ from that of the

hull.

(2) For the duct, the stabilizing moments about the vehicle

center of gravity (with a and q) are due primarily to the normal

force which is generated by the upwash over the duct. The moments

about the midchord diameter of the duct are negligible in compari-

son with these moments. In this analysis, however, we have allowed

no interference between the hull and ducted propeller, and we have

neglected the effect of the hull boundary layer on the propeller

since it is reasonably small compared with the duct radius ( 6 *L -

1.34 in., R - 6 in.).

(3) We have assumed an aircraft type propeller (of low solid-

ity with slender blades) which is located near the exit plane of

the duct. For such a configuration the only appreciable effects of

the propeller are its thrust force and its interference upon the

duct. However, small forces and moments are generated on the pro-

peller which are perpendicular to the motion which causes them.

The following conclusions are drawn from Table VI for the

overall configuration:

(1) The static stability Cm is influenced appreciably by

each component; the hull, the ducted propeller, and the fin.

(2) The q damping Cm from the ducted propeller and fin
a

are both strongly stabilizing and outweigh the destabilizing effect
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of the hull boundary layer, even though this has been overestimated

here.

(3) The & damping Cm. is due almost entirely to the hull

boundary layer and has been overestimated here.

(4) The damping in pitch (C " + C &) is stabilizing and is

produced mostly by the ducted propeller. The fins provide about 30

percent of the damping and the contribution of the hull is negligible

with the boundary layer producing opposite effects on CM." and Cm"
Now we shall estimate the undamped natural frequency Wn and

I the damping ratio C (or percent critical damping) for oscilla-

tion of the entire configuration, the undamped natural frequency is

given by (Eqs. (8-85) , Ref. 10)

Zn CM q A(D/2 (140)

a [ mc ,y"I

and the damping ratio for impulsive pitch control in steady flight

is (Eq. (8-86), Ref. 10)
+ C -2 Lc"D2)] q°A

- [CNa - (mq" Cm. ")i 2
2 J 2mcVown (141)

where mc is the mass of the entire configuration and K y is the

I radius of gyration of entire configuration about the hull center of

gravity.

We shall take mc and K " to be those for the hull alone
yI from Appendix E as follows:

I
E *
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P" pVol 7" 8 rmrLp (142)mc 15 m

y - 0.0457 L (143)

Substitution of these values and those in Table VI and Figure 4

into Equation (140) yields for the natural frequency

15 _(C)(144)
n a 32(0.456)

"- - 16.4 Cm
Ma

- 95.0

wn - 9.75 rad/sec (145)

The undamped period of oscillation is then

T " 2 0.66 sec (146)'on

and the damping ratio is C +c
m- 

md(a '(C• 8 x 4.57 (r21

91+ 212.3 1 N-8 4.91 + 8 .57/)(15× 9.75)

• 1.67 (147)

so the torpedo is heavily damped.

This ratio is influenced appreciably by each component of the con-

figuration (the hull, the ducted propeller and the fin) as seen

from Table VI.
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3.5.6 Interference between hull and ducted propeller

In the above calculative example, the stability derivatives

[ of an isolated slender hull were used along with those for an iso-

lated ducted propeller with which it was in thrust equilibrium,

T X - TD(p) + Tp In other words, the mutual interference between

L the hull and ducted propeller was neglected. To obtain some in-

sight into the order of magnitude of this interference effect, we

I shall estimate here the thrust interference for steady axial flight.

This will be done by:

1.(1) Assuming the hull drag to be independent of hull shape

and given by the flat plate boundary layer of Section 3.5.1 (Eq.

(84)).

1. (2) Approximating the duct bound vorticity distribution

(Eq. (A.50)) by the expression

Yh - Y + 2K tan (148)

"where y is the actuator disk vorticity and K is a constant to
1

be determined.

(3) Representing the hull shape by the dividing stream

surface about a concentrated point source and sink (Sketch C).

(4) Choosing the value of K such that there is no lateralI 1

velocity at the midchord point of the duct.

(5) Solving for the duct thrust from the leading-edge singu-

larity represented by K

11
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In this analysis, the hull shape is allowed to change accord-

ing to the inflow of the ducted propeller (Sketch D), and the effect

of the hull boundary layer entering the ducted propeller will be

neglected. Thus, the results will give only an order-of-magnitude

estimate of the mutual interference.

- - I
L 0

Sketch C. - Hull and ducted-propeller nomenclature.

The above analytical approximations will first be tested by

solving for the value of duct thrust T(p) (for the isolateda

ducted propeller) using the above approximate bound vorticity

distribution and comparing this value with TD(P) obtained from
e

the more exact theory (Eq. (11)). For the approximate flow model,

the duct thrust is found to be expressible as
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2/2

T I~ p-(n 2 (149)
S D(P) 2 2 c 2

and from Equation (11) we have

I- TD(P) - C?2 (2 ni".- -)2 (150)

I For cases in which c/D < 1/8, we find that

0.89 < TD(P)e < 1 (151)

w' Thus, the approximate value of duct thrust is reasonably good for

very short ducts. Also, the total circulation about the duct chord

Ij is found to be within 8 percent of the more exact value for c/D <

1/8.

.° In the absence of the ducted propeller, the hull shape (Ref.

12, p. 461) is axially symmetric and is symmetric fore and aft.

Also, for a very slender hull, we have

rm << S

L - 2S

and
- 2 (Vo/2)

0 - rmo (152)

]i In the presence of the ducted propeller, the hull is no longer

symmetric fore and aft, but the forward half of the hull in not

Li significantly distorted (see Sketch D). The duct thrust in the

!,I
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presence of the hull and propeller (as calculated by the method

described above) is given approximately by

r (Vo/) rm/D'

TD(HP) TD(P) n(8D/c) - 2(153)
a~ ,a

where it has been assumed that s << D << L and r << L. Them

duct thrust in the presence of the propeller is therefore in-

creased, due to hull interference, by an amount

TH -D(P) " TD(HP) - TD(P) (154)

On the other hand, the pressure drag of the hull due to inter-

ference from the ducted propeller is found from the Blasius formula

(p. 168, ReZ. 12) to be

XD(P) _. 2 Dqo • 2  In 8 •+ 1 + Vr 2 (1

S2D2Vo (155)

Thus we find that the ratio of increased thrust to increased drag

is

T 2 In(8D/c) - 4 + V /oY) rm2 /D 2

"H D(P) 0 - 0.78
XD(P) -H tn(8D/c) + + r(v 0/V ) rm2/D 2

(156)

and there is a net loss of thrust for the entire configuration due

to duct-hull interference. One would expect this effect to be even

greater without hull distortion. One can imagine that the inter-

ference forces are generated by moving the ducted propeller from far
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downstream to a point near the base of the hull as shown in Sketch

D. Now, since TH,.,(p) < XD(P)__H, the propeller thrust (or

I 3Y/Vo) must be increased to maintain thrust equilibrium. If there

were no propeller in the duct, that is, if '" 0, then the hull

and duct interference forces would of course be equal and opposite,

but thrust equilibrium would not be possible without the propeller.

T.D(P) Tp D

VV.

]- ~Vo •

V 0  
vi-

X + XD(p)_.H TD(P) + Tp(D) + TH-..D(P)

Sketch D - Hull and ducted propeller interference forces.

Using the values estimated in Section 3.5.1 for a different (para-

bolic) isolated hull shape ('VO - 0.050, c - 0.2D, D 2rm, and

L- 10D), we find from Equation (153) that

V2
TD 1~ 0.050(4)1.69] (~1 TD(HP)a TD(p)a + - 106 TD (157)

Il



-64-

Thus, the approximate duct thrust increases tremendously because

5of interference with a blunt base hull. However, this is due to

the fact that the ducted propeller is very lightly loaded when it

is isolated from the hull (far downstream in Sketch D). When they

are brought together, the hull induces a large radial velocity

component across the duct as compared with the lightly loaded pro-

peller (Sketch D). Thus, the duct thrust due to hull interference

is much larger than that required to overcome the hull drag for

the present configuration. If the propeller had been more highly

loaded so that y - V0  for example, then the duct thrust would

have increased by a factor of only 2.15 rather than 106.

The above analysis indicates that large interference effects

may exist between the ducted propeller and hull, and that more

precise analysis should therefore be made to obtain valid quantita-

tive results. Since both the hull and the propeller induce a radial

in-flow which results in a leading-edge suction on the duct, the

effect of hull interference on the duct stability derivatives should

be similar to the effect of an increase in propeller loading or

Y/Vo. One aspect of this observation is that duct shapes which

would actually be used in practice to propel hulls with blunt bases

would likely have the duct diameter decreasing in the streamwise

direction in order to prevent flow separation (in the absence of

boundary-layer control). Thus, in view of the large effect of pro-

peller loading on hull-duct interference forces, a reasonable es-

timate of these interference forces would require that the actual

5Note that Equation (151) is considerably less accurate for
c/D - 0.2 than for c/D • 1/8.
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hull and duct shape and the appropriate propeller loading be approx-I
imated more closely than is possible within the scope of the present

S[ project. This is particularly true for the nonaxial and unsteady

J flight conditions.

3.6 Comparison of Duct Normal Force with that of an Equivalent Fin

I m It would be of interest to know whether a ducted propeller is

more or less effective in damping than a fin having the same pro-

jected area. For this purpose, we shall compare the normal forces

on a duct in the presence of a propeller with those on such a fin

V for small a, q, and & motions. The propeller forces themselves

are known to be comparatively small (Section 3.4) and will there-

fore not be considered.

LI. The duct normal force ND(p) predicted in Section 3.1 (Eq.

(9)) will be compared with NF for a fin with chord c and total

L exposed span D where c - 0.2D for both the duct and the fin.

Thus the fin planform is the projected side area of the duct. The

fin will be considered as a section of an infinitely long plate;

that is, no aspect ratio corrections will be made. For c - 0.2D

(aspect ratio of 5) these corrections are small.

First, let us consider the effect of a small angle of attack

aO. For the duct, we have from Equation (9)

(CN,) -1.91 + 0.845 - (158)

D(P) Vo

and for the fin, using a lift curve slope of 2 r, the normal force is

I
I'
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NF - cDq 0 27ra (159)

Hence

D(p� •8 � 1.91 + 0.845 - " 1.19 + 0.528 -T- (160)

N F aV o) V 0

Thus, even without a propeller (,y - 0), we see that ND is 19

percent greater than NF. This result is nearly independent of

c/D when c << D as can be seen from Equations (9) and (159). In

Reference 7 an identical expression for ND is derived for the

duct alone (a - 0) and it is shown therein that ND is exactly

twice the lift of a fin of elliptical planform with a total span

equal to D and a maximum chord equal to c. Increasing the

propeller loading (or y/V0 ) further increases the effectiveness

of the ducted propeller over the fin.

Now consider ND(P) due to pitching q about the midchord

duct diameter. From Equation (18) we find that

C -( c ( 16D - + . D2 0.675 -T- + 0.126Nq)D (P) D c n 0 D 2o

(161)

for c - 0.2D and a - 0.0

For the flat fin pitching about its midspan with ao - 0,

N F corresponds to that for an equivalent cambered fin (Sketch A.7)

so that the normal force is
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NF - cDqo0 2ra (162)ii ~q4

where

a , ' . 2 h . c q _

c 4V

Thus, we find for pitching

ND(P)
D + n 16D1.5 7 +8.4 5 -y- (163)(tNF 2 2c 0 n- )-- V0 Vo

V The increased effectiveness of the ducted propeller over the fin in

pitch therefore increases with y/V0  and decreases with c/D.

Finally, let us consider the normal force due to plunging,

6d - -•/Vo at ao - 0. For the duct, we have from Equation (28)

(N) M - 2c(DD(P)8 (164)

For the fin, we have from Equation (27)

2lrcD (15N F 4 Pv (165)

Thus for any value of c/D
i" ~ND(p) d

N --- " r 1.57
NF. 2
a

It is therefore concluded that the duct normal force due to a, q,and

& is larger than the fin normal force for all values of c/D and

y/VO. Furthermore, the effectiveness with q and a increase as

the propeller loading is increased.
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4. COMPARISON OF EXPERIMENTAL DATA AND THEORY

4.1 Introduction

In this section, the predicted forces and moments on the duct

in the presence of the propeller will be compared with every known

source of applicable ducted propeller data. The sources of data

will be selected from the references listed, which are summarized

in Reference 2. We shall use only the data for which the forces

and moments on the propeller and on the duct were measured inde-

pendently and where the duct was reasonably short, straight, and

thin as assumed in the present theory. Wherever a choice is possible,

only the shortest duct tested will be considered here. Most of

these data are for steady hovering flight or for axial flow, in which

case only thrust forces exist on the duct and propeller and for which

the theory predicts only the duct thrust coefficient in terms of

the propeller thrust coefficient.

Two sources of data for steady flow at angle of attack (Refs. 13

and 14) will be used for comparison with the predicted normal force

coefficient of the duct, but only one of these (Ref. 13) contains

measurements of the duct pitching moment coefficient which will

also be compared. The most recent ducted propeller data at angle

of attack (Ref. 15) will not be used here, because tne duct chord

to diameter ratio (c/D - 0.61) was not small as assumed in the

present theory.

The only known source of dynamic data (Ref. 16) will not be

used here for comparison, because the ducted propeller was mounted
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near a large hull and only the forces and moments on the entire

configuration were measured. Since the hull interference and

SI boundary-layer effects upon the ducted'projeiler were probably not

small enough to neglect, it does not appear worthwhile to attempt

t I the extraction of isolated ducted propeller data from these measure-

k ments. Thus no dynamic data will be compared with the theory.

Even for the data which are used, the validity of the compar-

ison with the present theory is questionable because of one or

more of the following factors:

I (a) Flow separation from the duct inlet

(b) Duct chord/diameter ratio too large

(c) Nonuniform propeller loading

I (d) Slipstream swirl generated by a single propeller

(e) Too much duct taper

I (f) Large centerbody

The present theory predicts the forces and moments on the

duct in the presence of the propeller by representing the propeller

as a uniformly loaded actuator disk. The duct force and moment

coefficients, CTD(,), C(P) and C mD are predicted as

functions of the independent variables ao c/D, and y/Vo. There-

I fore, in order to predict the duct data for a given test, we must

first express y/Vo in terms of the measured data. For the ideal,

I uniformly loaded actuator disk and the corresponding ideal slip-

stream with constant velocity Vj and no swirl, this is done quite

simply by use of Bernoulli's equation far ahead and behind the

I
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propeller disk. However, this model is evidently too idealized

for a satisfactory comparison of theory and experiment. Therefore,

in order to improve the comparison of the present theory with data

for real propellers, we shall now consider real slipstream effects.

These can be catagorized as:

(a) Slipstream swirl generated by the propeller

(b) Nonuniformity of the jet velocity component Vj, which is
aligned with the axis of the slipstream (Fig. 6)

(c) Frictional losses which appear as propeller blade wakes

Dual, counter-rotating propellers or propeller-stator combina-

tions are seldom used in the data described below. When such com-

binations are used, the slipstream swirl should be comparatively

small compared with that for a single propeller.

For the purpose of improving the comparison of the present

theory with experimental data, the data will be selected for com-

binations of blade pitch P and advance ratio ?A for which the

real slipstream effects are minimum. A method for accomplishing

this end will be described below, and the real slipstream effects

upon the present theory will be discussed. The purpose of the latter

discussion is to give some insight into how the predicted duct

coefficients are influenced, but no attempt is made to give quanti-

tative predictions of real slipstream effects.

4.2 Data Reduction Method

The present theory predicts the forces and moments on the duct

in the presence of a propeller by representing the propeller as a
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uniformly loaded actuator disk, and the propeller slipstream vorticity,

'Y/Vo in Figure 2, is the only direct effect of the propeller which

3 appears in the analysis. The purpose of this section is to develop

expressions for y/V in terms of the propeller coefficients which

are usually measured in experimental investigations.

J First, we shall retain the assumption of an ideal actuator

disk and find y/V in terms of the propeller disk loading CTp(D).

SThen we shall include two real propeller slipstream effects, the

swirl and the blade wake frictional losses, and derive a second

I expression for y/V0 . The purposes of the second derivation are

to demonstrate: (1) a method for selecting data which minimizes the

real slipstream effects, and (2) the way in which real slipstream

j effects influence the predicted duct forces and moments.

- 4.2.1 Evaluation of y/V0  for an Actuator Disk

The diameter of the actual stream tube flowing through the

ducted propeller at angle of attack changes continuously as shown

in Figure 6. However, the duct forces and moments have been pre-

dicted by assuming that the slipstream vorticity y could be put

on the dashed cylindrical surface of diameter D. In the actual

slipstream, there is a counter-rotating swirl distribution due to

the cross flow of the free stream over it (Fig. 6). This swirl

distribution (which is generated by the trailing vortex filaments

in the duct wake dI'w in Fig. 2) is already incorporated in the

present analysis. The kinetic energy associated with this swirl

distribution causes an induced drag due to lift, which appears in

i! )
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the calculated duct thrust and duct normal force. However, since

we have assumed that the cross flow is small (V0 sin << V.),

we shall neglect the swirl velocity component in evaluating the

total pressure rise across the actuator disk. Thus, we can write

Bernoulli's equation ahead of and behind the propeller disk as

Ap .W (Vj _ Vo2) (167)

so that

C T P(D) _ 1) (168)
PTP(D) Aq 0

Furthermore, since a. << a o in Figure 6, we can write

Y M Vj Vo cos ao (169)

Thus, by equating the two expressions for V. given byEquations)

(168) and (169), we can evaluate the propeller slipstream vorticity

in terms of the propeller thrust coefficient as

S+ -cos a (170)
V0 F P (D) (170)

For the special case of hovering flight, Equation (15) replaces

Equation (170).

4.2.2 Real slipstream effects and data selection procedure

The above evaluation of y/V assumes that the slipstream

is ideal; that is, the propeller is an actuator disk, which is

uniformly loaded so that it generates no swirl, the slipstream

velocity V. is constant, and there are ho frictional losses)
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S(blade wakes). Here we shall evaluate with these real slip-

stream effects included insofar as possible within the context of

Ii the present theory. To do this, we shall first assume that the

I actuator disk adds angular as well as axial momentum to the slip-

stream as shown in Figure 6.

To account for the swirl qualitatively, we shall assume that

far downstream, at station j, the slipstream or jet rotates as a

F solid body with a swirl velocity component

I rj m (171)

The additional vorticity shed by the propeller to produce this

- swirl is a uniform distribution of axial vortex filaments within

the jet and a uniform distribution of filaments of opposite sign

1° along the jet boundary. Within the context of the present theory,

the effect of this vorticity upon the duct is found by placing the

.- slipstream on the dashed cylindrical extension of the duct, as

indicated in Figure 6. It can be shown that when this is done

the additional vorticity induces no velocity outside of the semi-

infinite dashed cylinder. Thus, the equations for the duct force

and moment coefficients given by the present theory in terms of

1/V0  are not affected by the additional vorticity due to solid

body rotation of the slipstream.

The theory assumes that the slipstream vorticity y, associated

with the velocity component V. aligned with its axis, is concen-

trated along the jet surface. Thus, within the framework of this

I[ o
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theory, we must retain the assumption that V. is constant. How-

ever, for single propellers operating at peak efficiency, the net

effect of propeller swirl V is probably larger than the non-

uniformity of V.. Hence, we can account for the dominant real

effect.

With this representation of the propeller slipstream, the

propeller disk loading Ap is no longer uniform, since the total

pressure in the slipstream is not constant. We shall now assume

that, in addition to imparting axial and angular momentum and

energy to the slipstream, the propeller introduces frictional

losses in the form of blade wakes. The head loss H associated

with these wakes cau.s an increase in propeller power. However,

we shall assume that the wakes mix rapidly and that the head loss

is distributed uniformly within the slipstream. Thus, there is

no vorticity far downstream associated with H and no effect upon

the duct or propeller forces. The only effect of H then is to

increase the propeller torque and power.

Steady FliQht at Angle of Attack

Now let us consider the angular momentum, the power, and the

thrust associated with the slipstream swirl VS. For a single

propeller and no stator, we can equate the propeller torque to the

angular momentum of the jet, since a. << 1 (Fig. 6). Thus, we

have
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L - f rjVsPVj dA3

A.[I )

" j22VSpVV rr3J ra - (172)

jr 2 VSm r m

r.0 ~m r
i. r.rI

"A.j -•- -wVjVSm " Wj 2--VSm

-~ where the mass flow rate in the slipstream is

Wj - pAjVj (173)

For dual propellers, or propeller-stator combinations, T is the

net torque on the combination.

The steady-flow energy equation for the stream tube in Figure 6

I. (between stations far upstream and far downstream) can be written

as

P2 pVj dA. - Wj + 2 - (174)

A.
3

where P is the power supplied to the propeller and H,/p is the

frictional head loss due to blade wakes. In Equation (174), we

have neglected the comparatively small swirl velocity component in

L• the jet which is induced by the duct trailing vorticity (see Fig. 6)

just as we did previously in calculating Ap across the actuator

disk (see Eq. (167)).

,[

!)
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Lot us now find the variation of static pressure across the

jet so that we can evaluate Equation (174). This can conveniently

be done in a coordinate system which translates along the jet with

velocity Vj. In this coordinate system, we can write

6 P VS (175)

Making use of Equation (171), we find by integration that

Po-P P V v2 S (176)Sm rjm S

Substitution into Equation (174) then gives

P - 2pjrjm. + V - rj d rj
o f -2 2 S m rm 2 rjm rim

- W.P +o_.o2 (177)

and upon integration over the jet, we find that

P- - (V.j -Vo
2 + 2 (178)

2 3

where Tw is summed for the propellers if there are more than one.

Thus, the propeller power is increased by an amount

due to swirl and blade wakes.
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fNow let us find the effect of Vs upon the total thrust force

of the ducted propeller, TD(p) + Tp(D). We can write the momentum

.. equation along the duct axis, for a large control surface surround-

ing Figure 6, as

T D,(P) T oP,(D) -Iw (v (J coo a oV 0 coos o) coos aj f (po- p) dA
A.

J (179)

Substitution of Equation (176) and use of cos aj = 1 then gives

I 
)

T +T Wj(Vj - V0 cos a - A - . .
D) 0 0- mrM rm rm

i j ,(180)

TD(P) + TP(D)" - V0 cos aO 4V (181)
TV.i

so that the total thrust is reduced by an amount

Im

due to swirl. Now we shall combine Equations (172), (178), (180),

and (181), and put the results in dimensionless coefficient form.

Thus, equating the two expressions for T as given by Equations

(172) and (178) yields for a single propeller

r. V v2  H
.2r A -= -L. 1 + 2 (182)R VO VO 2 2VO 2[pV-
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Division of Equation (181) by (178) gives a propulsive efficiency

defined as

V S2
V-2 -cos O VjTV 0o 4V°av

, D(p) IDTp (D) V • 2 - 0 4V 0 2 V (183)P P 0V .2  H

V32- 1 + 2 202 2pvo

and the total thrust coefficient of the ducted propeller is, from

Equation (181)

- TD(P) + Tp(D) . 2 Vj Ss

CTDp Aqo - 2 - 4VoVj (184)

where V is the averaged axial velocity component through the

duct, given by

V- * f V dA
A

In addition to the above set of equations, we can write from

continuity

V 0 (185)

and, from Figure 6, (where a0 >> aj . 0)

-. -cos ao (186)V°0 Vo 0
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f Thus, we have a set of five equations, (182) through (186), for

the six dimensionless unknowns

r.i Vs V. H
M PMo a - V °-X

R ' V VO 0 2 V V

in terms of three measured coefficients1..
(a) Propeller advance ratio, X - V0 /UR

(b) Propulsive efficiency, 1p

(c) Total thrust coefficient, CT

We could solve this set of equations by using the present theory

to evaluate V/V in terms of c/D and (/VO. For example,
00

Figure 3(a) gives values of V/y for hovering flight and for

c - 0.2D. For axial forward flight, V is simply increased by

V0V The present theory also gives the thrust ratio

TD(P) a I a .C TDpTp (D K V 0 T(P) (187)ST D) V CTp D

so that either of these thrust coefficients could be used instead

of C in Equation (184). However, our purpose here is to find

TIT an independent expression for -y/V 0in terms of measured coefficients

to supplement the present theory. Therefore, we shall drop HL/PVo 2

in Equation (183), assuming it to be zero, rather than use the

"present theory to evaluate V/Vo.
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It should be noted that the coefficients CTDP and ]p
used above are related to the torque coefficient CQ and the

power coefficient C p as follows:

?XCTDP f( VSm r

c--o - D f V-- (188)COQ Aq0R 11 m)__

CP wq0V (189)AqoVo X

Axial Flight

If we now restrict the angle of attack a0  to zero and

eliminate VS /Vo0, r. /R, and y/V0  with Equations (183), (185),

and (186), respectively, then we can write the remaining Equa-

tions (182) and (184) in the form

[-•- e/4 5V) (190)

and

C
v° r 2!. _ (191)

Then, elimination of V/Vo gives the expression
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I:

TDP -iVo ) w 0

I
2 v V (193)

V V

0 0

Thus, Equations (192) and (193) give the propeller vorticity

Y/VO in terms of three measured coefficients (CT DP, ) , and X).

for the case in which the angle of attack and propeller frictional

losses are zero.

L. To illustrate the effect of swirl, we shall use Equation (192)

for y/V with one source of experimental data (Ref. 19) for

"comparison with Equation (170). However, in general, we shall

use Equation (170) to evaluate y/Vo. We shall do this for

selected values of X and P which minimize the real slipstream

effects. From Equations (170) and (183) it can be seen that, for
fixed values of a and C (or Vj/Vo), these effects (as

o TD(P)
represented by VS and HI) are minimum when qp is maximum.

I. It is noted in Equation (183) that both propeller swirl and

frictional losses tend to decrease qp as would be expected from

I physical reasoning for axial flow. It should be recalled that

S[ Equation (183) is based upon the following assumptions:

!I
:1.'
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(1) Vj is constant and aj = 0

(2) The jet slipstream rotates as a solid body

(3) The frictional head loss is uniformly distributed over
the jet

Using the above results, we shall select combinations of A

and P for which Tp is a maximum for a fixed value of CT .

Since ducted propeller data are usually presented in terms of X

and 0, this will be done by use of data plots as shown below for

a fixed angle of attack.

3

f2

C T

Tip

Sketch E.- Example data plots.

It can be seen that the combination of X and 3 for maximum

ýp with CTP(D) fixed cannot be obtained by the usual procedure

of maximizing qp with either • or X held constant.



II -83-

Hovering Flight

Carrying through the above analysis for hovering flight

(Vo - 0), with the appropriate definitions based on V. rather

then Vo, we find instead of Equations (183) and (192)

2
V s

T V 4V 2
- (DP) ÷ P(D) V . (194)

P 2 2H
V1 +Ii pVj 2

and

V - 2(1 - T) D(P) (195)(Di,~~ h rhA(•S, (195)
a)R T~ A( W 2 R 2)

It can be seen that 1h is maximum for minimum swirl and minimum

frictional loss and that Tih could be evaluated from Equation (194)

by use of measured data and Equation (195) to eliminate Vj. How-

ever, 71h is the "compressor efficiency" which is customarily

defined as

TD(p)h + T(D)h /Tp(
T )hh pP(D )h for VS - H - 0 (196)

'1h P 2pA Sm

" by neglecting swirl and evaluating V. from the Bernoulli Equa-

tion (15). We shall retain this system for evaluating Ih" It

can then be shown that

for VS-H - 0 (197)
T m

D(P)h!hI +
LIT
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where h is the usual figure of merit for hovering flight as n

defined in the List of Symbols. Now, to select hovering data for

which the swirl and head loss are minimum, lhe value of 0 will

be chosen which gives a maximum value of 1h as defined in Equa-

tion (197). For no swirl, we have the ideal case of

=D (Ph

qh- 1 and Mh- Tp h +1 (198)
()h

For a very long duct, simple momentum theory gives TD(P)h T P(D)h

and Equation (198) then gives for c >> D

iH - 1 and Mh.- ' (199)

Pitching or Plunging Flight

For either pitching or plunging flight, the same procedure

of data extraction as outlined above for steady flight at angle

of attack will be used for small pitching and plunging rates. At

the present time, however, no applicable dynamic data are available

for comparison with the theory.

4.3 Thrust Ratio in Hovering and Axial Flight

Hovering Flight

The division of thrust in hovering flight as predicted by

theory (Eq. (17)) is

( P ZSi) I(n16D 2~ (200)
P(D) h D
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This expression is plotted in Figure 7 and is compared with six

sources of data chosen from Table I of Reference 2. The asymptotic

value for large chord (Eq. (199)) is also shown. Equation (200)

is based upon the assumption that c << D. However, this assumption

I does not introduce much error into the approximate expressions for

•I the velocity induced by the actuator disk if c cr (D/4) (see Eq.

(A.12)). Furthermore, the additional approximation that the flow

SI is two dimensional over each chordwise strip of the duct is expected

to be reasonably accurate if c < (D/4). Therefore, we expect

Equation (200) to be valid within this range as indicated by the

I solid line in Figure 7.

Data by Gill

Shown in Figure 7(a)are data by Gill taken from Figures 25,

26, and 28 of Reference 13 for three duct shapes designed at Hiller

Aircraft Corp. These ducts were all relatively straight, thin,

and short and had an inside diameter of 24 inches as indicated.

The ducts were used with counter-rotating propellers, each having

three twisted and tapered blades with only 0.04-inch clearance

I between the blade tips and the inner surface of the duct. The

thrust ratio was found to depend only very slightly on the meanV
blade pitch setting P, as shown in Figure 7(a). With independent

- variation of •, neither the figure of merit

T + TTD (D)D(P)h TP(D)
Mh P 2pA (201)

oI

S. ..
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nor the compressor efficiency

rTD(P) P(D) (D
b h TP P )b (202)

71h P 2 A

was a maximum when the thrust ratio T D (p)/Tp (D) was maximum, as

can be seen from the data of Figure 7(a).This behavior is believed

to be associated with flow separation from the duct leading edge,

which was actually observed during hovering flight for all the

duct shapes except for one having a large inlet lip radius.

Because of this fact, it is not surprising that the measured thrust

ratio was only about half of that calculated. That is, the thrust

carried by the duct was evidently greatly diminished by flow separa-

tion from the duct leading edge.

Data by Horn

Shown in Figure 7(b) Is a datum point by Horn taken from Fig-

ure 13 of Reference 17. The configuration was of the shape indicated

and was tested in water. A single propeller with four blades was

used without a stator, so that swirl was introduced into the slip-

stream. Furthermore, the duct is toollong for comparison with the

theory, and the blade-pitch angle was t varied. Propeller loca-

tion was varied in a still longer duct ýwhich is therefore not

shown in the figure) and there was little effect of propeller

location upon either T P(D) h or TD(p) h'
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[ Data by Moser

Also shown in Figure7(a) axe data by Moser, taken from Fig-

ure 12(b) of Reference 18. The duct shape was varied by adding a

Ii sheet-metal ring after the duct, as indicated, such that

0.33 a K 0.89

It was found that the thrust ratio was virtually invariant with

[ duct length as indicated by the arrow in the figure. The single

ii propeller had two blades. The blade pitch was not varied, and

stators were not used.

L Data by Kruger

Finally shown in Figure 7(b)are data by Kruger, taken from

Figure 21 of Reference 19 for one of fifteen shroud shapes tested

with a relatively large centerbody. The duct shape used here had

the smallest camber, thickness, and chord-to-diameter ratio of

all the ducts tested therein. A single propeller with eight

blades and no stator was used with this duct, and the blade-pitch

setting 0 was varied independently. It can be seen that the

I thrust ratio in this case was very dependent upon P and again

was not maximum for peak efficiency (either Mh or rh). These

peaks occurred at the lowest blade-pitch angle which was tested,

namely 15°. However, it can be seen from the measured values of

duct and propeller thrust in Figure 21 of Reference 19 that both

j the propeller and the duct were stalled at the higher pitch angles,

so that the measured thrust ratio at high • is not actuallyiI
II
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comparable with the theory. For a longer, thicker, converging

shroud, hovering thrust ratios as great as two were obtained.

However, the duct length, c - 0.625D, and convergence were too

large for comparison with the present theory.

Data by Grose

Shown in Figure 7(c)are data by Grose, taken from Figures 18

to 21 of Reference 14. The shroud shown in Figure 7(c) (Grose's

"high-speed" shroud), was relatively thin and straight, as indi-

cated; however, it was rather long for comparison with the present

theory (c - 0.475D). The flow was observed to separate from the

leading edge and to reattach near the trailing edge of this duct

during hovering. The variation of thrust ratio TD(P)h/TP(D)h

with blade pitch is shown in Figure 7(c). In this case s1 4 h*

and TD(P)h/TP(D)h were all maximum for • 150. A second

"static" shroud, designed with a large radius inlet lip to prevent

separation, had thrust ratios as large as unity. Both ducts were

tested with a single propeller having four blades and no stators.

Propeller tip speeds were between 500 and 1200 feet per second

during these tests.

Data by Platt

Also shown in Figure7(c) are data by Platt, taken from Figure 19

of Reference 20 for the shortest of three ducts tested. This duct

was tested with counter-rotating propellers with blade tip speeds

between 400 and 600 feet per second. The front propeller had five

blades and the rear seven blades. The variation of thrust ratio
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A.
S[ with blade pitch is indicated in Figure 7(c). Here Mh, 1h' and

T h/TP(D) were all highest for the highest pitch angle tested,TD(P)h/PDh

namely • -45. It will be noted that the values of TD(P)/Tp(D)

measured by Platt were far in excess of the values predicted either

II by the present theory or by simple momentum theory. However, neither

F of these theories is expected to be valid for this intermediate range

of c/D (c - 0.67D). Thus, the need for a theory in the intermediate

range of chord-to-diameter ratio is readily apparent. 6

Flow separation and high noise level were observed by Platt only

at low propeller speed with this duct. At the higher rotational speeds

tested (corresponding to the data shown in Fig. 7(c)), the flow was

attached and the duct thrust was about twice as great as for separated

I flow. This configuration is the only one known for which the duct

was essentially straight and thin and for which the flow was known to

• - be unseparated in hovering. The fact that the Grose duct was always

y stalled and the Platt duct generally unstalled during hovering tests

apparently was not due to Reynolds number, because the maximum Reynolds

numbers based on tip speed and chord length were nearly equal for the

two cases.

Axial Flight

[ The thrust ratio for axial flight can be written (from Eqs. (11),

(168), (169), and (200)) as

T 2-In 16_D- 2 (TD/TP)h

TD) D c V (203)
1P(D) 0 1

I. Subsequent analysis has shown that for hovering flight the theoretical
thrust ratio is greater than unity for the intermediate range of c/D.il

I
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Thus, the thrust ratio in axial flow is evidently given by the

value for hovering divided by 1 + 2(V /,y). Furthermore, the ratio

V /y is a function only of the actuator disk loading when there
0

are no real slipstream effects. That is, Equations (169) and (170)

give (for a° - 0)

V.
a .CTY + 1 (204)
Vo o P(D)

Thus, Equations (203) and (204) give the predicted thrust ratio in

terms of c/D and the measured propeller thrust coefficient. This

predicted value will now be compared with five sources of measured

data. The data will be restricted, whenever possible, to those

cortbinations of propeller advance ratio A - Vo/wR, and blade-pitch

setting P which give maximum propulsive "efficiency,"

- [TD(P) + TP(D)] V0  (205)
Tip p

with fixed propeller loading CT . This combination shouldCp (D)

minimize the real slipstream effects (see Section 4.2) which have

been assumed to be zero in the present theory. Thus, the predicted

value of propulsive efficiency (Eq. (183)) with VSm- H- 0) is

the "ideal Froude efficiency."

Tip 2 (206)•PVj + 1

V0
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Data by Gill

Of the three Hiller ducts shown in Figure 7(a),only D P S
V~ 43

was tested in axial flight. Measured values of np and values of

Vj/V 0  calculated from Equation (204) are plotted in Figure 8,
using data from Figures 178 and 179 of Reference 13, and the method

of data selection is indicated in Figure 8 for values ofV/Vo

of 1.75, 2.0, and 3.5.

I- For the values of V j/Vo indicated in Table VII, this pro-

cedure (N and 0 in each case selected for the highest value of

np) gives the results shown therein. The values of Vj/V 0  in

Figure 8 differ from those in Table VII because the former were

chosen to illustrate that P varies with V./Vo for maximum Tp.

I The measured values of np in Table VII are considerably smaller

V than the predicted ideal Froude efficiency (Eq. (206)). Therefore,

real slipstream effects are probably not negligible as assumed in

the above comparison of data and theory.

It was not reported in Reference 13 whether this duct was

stalled at the above test conditions, but it was observed to be

stalled during hovering. Therefore, the low values of measured

thrust ratio as compared with theory could be due to flow separation

_ and/or real slipstream effects.

Data by Horn
The duct shape of Horn, shown in Figure 7(b), was also tested

:1 in axial flow, and the values in Table VIII were obtained from

Figure 13, Reference 17, by the method described above.II
!I
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As indicated in Figure 7(b),this duct is actually too long for

accurate prediction of the thrust ratio by the present theory. A

single propeller was tested with 1 fixed. The axial flight data

indicate a wide variation of thrust ratio with advance ratio. At

the advance ratio for which qp was highest, there is little

difference between the small values of measured and predicted

thrust ratio. Real slipstream effects were probably large, since

lp as measured was much smaller than the predicted ideal Froude

efficiency.

Data by Allen

In Reference 21, data are presented for axial-flow tests of

two-bladed propellers with and without a duct. Three different

propellers were used which had pitch settings, • - 200, 250, and

300. The duct shape, propeller location, and tip clearance are

indicated in Sketch F, below.

38.3" D

37.8" D 1.3'0.1

36.1" D

Sketch F.- Ducted-propeller configuration
tested by Allen (Ref. 21).
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It can be seen that more duct divergence and "internal diffusion"

were incorporated into this configuration than in those of Figure 7.

From a plot of measured data (taken from Fig. 2, Ref. 21)

' [ similar to Figure 8, the values in Table IX were obtained for maximum

rip at the selected values of CT
P (D)f Both the measured pressure distribution over this duct surface

and the good agreement between the measured values of duct thrust

I. and those predicted by the approximate potential flow analysis

(of Ref. 21), indicate that this duct was not appreciably stalled

during high-speed forward flight with any of the three propellers

I. tested. However, the measured value of TD(p) gradually increased

and then suddenly dropped appreciably when V /nD was decreased
1 0

I. to values slightly less than those corresponding to the data used

V above. It is therefore concluded that the duct was not stalled

for the data used above. At high advance ratios, TD(p) became

negative due to the large external duct divergence and friction

drag. Negative values of T also were measured without the

V propeller. It is observed that high values of n. were attained

and that the measured thrust ratio for • - 250 is greater than

the predicted ratio (for a straight duct). It seems reasonable

to attribute the latter fact mainly to internal diffusion.

Data by Kruger

The ducted propeller of Kruger shown in Figure 7b was also

tested in axial flow, and the blade pitch setting was varied inde-

pendently over the range 15° < • < 550. The procedure described

'I
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above was employed for selecting X and • for maximum at

fixed CT , and the values in Table X were obtained from a
P (D)

data plot similar to Figure 8. (Data from Fig. 21, Ref. 19, were

used for this purpose).

It can be seen that at the highest value of CTP the

measured value of np was not much smaller than the ideal Froude

efficiency and the agreement between the measured and predicted

value of thrust ratio is fair.

However, comparatively high values of 0 and A were used

during these tests. From the data (Fig. 21, Ref. 19), it appears

that stalling of both the duct and the propeller occurred at low

advance ratios, but that neither was stalled at the advance ratios

in Table X. Therefore, at the lower values of C the poorP (D)

agreement between the theory and data for 7p and TD(P)/TP(D)

is attributed mainly to real slipstream effects. However, a small part

of the duct thrust was generated by interference with the compara-

tively large centerbody. This effect was measured (Fig. 7, Ref. 19)

and found to give TD(H) - 0.063 Aqo.

To illustrate that the above data reduction procedure gives

better overall agreement between theory and experiment, we shall

now use the more conventional method where for each pitch setting

P, the advance ratio X which gives maximum propulsive efficiency

is chosen. The results are given belows



V C T 1+2 V.oo+ r
0 0C D)-/ T P-D DCT(D 0 (pred.) (exp.) (pred.)(exp.) (exp.) (Eq. (203)) (Eq. (206))

15 0. 20 1.12 0.46 1.0 0.14 0.50 0.81

25 .35 .33 .15 0.62 .054 .56 .86

35 .48 .22 .10 .80 .036 .59 .90

I40 .55 .16 .08 1.0 .029 .58 .93

I 45 .60 .17 .08 0.92 .029 .55 .92

- 55 .65 .24 .11 1.0 .039 .52 .89I-

Upon comparison with Table X it is evident that the overall agree-

I' ment for thrust ratio is not as good by this method.

We shall now attempt to account for the real slipstream effects

V in these data by using the procedure described in Section 4.2.2.

With this method, we choose X and 0 for highest n. for each

fixed value of CTp(D) as was done for Table X. However, we

shall use Equations (192) and (193) to estimate y/Vo0 with pro-

peller swirl present in the slipstream, rather than using Equa-

tion (170) which is valid only for an ideal slipstream with no

swirl. Using this method, we find the values given below for two

1. values of CT which correspond to the first and fourth values

in Table X.

'I
1'i
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T T (P) 0.750 Tp 1 + 2 (vol Y)
o o T V0  T T ( +2v 0)y S(D) 0 TP(D(D)

(pred.)(Eq. (203))

15 0.14 3 2.05 0.3 0.38

25 .32 0.5 0.75 .6 .21

It can be seen from these results that the comparison for thrust

ratio is improved by including the effect of propeller swirl in

evaluating T/V 0 . The experimental values of qp, CT DP, and X

were used in evaluating y/V from Equations (192) and (193).

The relatively poor agreement for the lower value of CT mayP(D)
be due to frictional head loss which is not included in Equation (192),

since we had set H - 0.

Data by Grose

The ducted propeller of Grose shown in Figure 7(c) was also

tested in axial flow with independent variation of blade pitch.

Using the data reduction method illustrated in Figure 8 (for

maximum np at fixed CT ), we find the values in Table XIP(D)
by using data from Figures 33 through 37 of Reference 14. It

can be seen that relatively high values of qp were attained in

these tests, so that real slipstream effects were probably com-

paratively small.

Although this duct was apparently unstalled in axial flow

(from the discussion in Ref. 14), particularly at the higher

advance ratios, agreement between theory and experiment for the



1 -97-

i thrust ratio cannot be expected because the duct was too long

(c/D - 0.475) for accurate prediction with the present theory.

Furthermore, the frictional drag of the duct was relatively large
for these tests as compared with the duct thrust. In fact, it

was found that for each blade pitch setting tested, except • - 170,

there was a net drag force on the duct at the advance ratio for

which qp was maximum. Using the data at peak efficiency for

- 170, we find the following values.

0 o CT y/V° TD(p)/Tp(D) TP(D) -+2(V°/y) +P V 1
n'(pred.) (pred.)

1 17 0.66 0.41 0.19 0.0049 0.061 0.72 0.91

Thus, TD(p) was much smaller than predicted, in fact generally

negative, by the data reduction procedure using pm for

" fixed 1.

4.4 Forces and Moments at Angle of Attack

Here we shall compare the present theory with all the available

data for the static stability derivatives of ducted propellers

having relatively short, straight, thin ducts. There are evidently

two sources of such data: Reference 14 for only N) at(

I relatively low angles of attack (0 < aO < 6.30), and Reference 13

for both C uD and (C at relatively large anglesS(P) ma(P)

of attack (500 < aO < 800).II

II
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The static derivatives of the duct forces and moments as

predicted by the present theory will be compared with these two

sources of data as selected by the technique used in Section 4.3

above. That is, combinations of advance ratio and blade pitch

will be chosen which give highest np at fixed values of CT .P(D)

Data by Grose

The comparison of the Grose data will be made for the " high

speed" duct (shown in Fig.7(c)) at the highest angle of attack

tested, namely 6.30. The data are from Figures 69 through 80 of

Reference 14.

The predicted value of the duct lift force, for a° << 1,

can be expressed as

L.(p) "ND(P) + TD(P) (207)

which gives upon substitution of Equations (9) and (11) with

c/D - 0.475

CL a - 3.42 + 1.47 VL + 0.009 (208)
z D(P) qAa Vo2

The value of T/V will be obtained from Equation (170) using

the measured value of CTP . Choosing values of P and X for
P(D)maximum •pat fixed CTp(D from a data plot similar to Figure 8

gives the values in Table XII.

The duct was apparently unstalled during the test conditions

used above. All of the data used here were with a free-stream

Mach number of 0.2, the lowest value which was tested. The
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I j agreement between theory and experiment for the duct lift curve J
slope is excellent, despite the rather large value of c/D.

Data by Gill

I The three ducts of Gill shown in Figure 7(a) were tested at

large angles of attack. However, only the data for the shortest

T duct (D P S) will be compared with theory for nonaxial flow.
4 3

I- All of the ducts were probably stalled at the large angles of

attack tested.

1 The predicted coefficients of this duct (from Eqs. ,(9), • (1l),

and (13), with c - 0.15D) are

(CN)D(p) - sin %o 1.52 cos a + 0.655 (209)

'Ii
TDP() CT (0.680 _ + 1.25 sin2  

0) (210)! [ T~~P(D) "CpD

(Cm)D(P) - 1.30 V'- sin a (211)Vo

and from Equations (169) and (170), we have

S+ Cos CT +1 (212)
V0  V 0 P(D)

Using the data reduction method of Section 4.2.2 and the

i measured data from Figures 58, 60, 61, 196, 198, and 199 of

Reference 13, we obtain the values in Table XIII for two angles

of attack, O s50o and O 80.LI
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It can be seen that the measured values of thrust ratio and

duct pitching moment are much smaller than predicted. This is

attributed to flow separation at the duct leading edge, since both

TD(P) and M(p) depend primarily on leading-edge suction (see

Eq. (13)). The agreement is considerably better for (CN)D(p)

because it is less sensitive to leading-edge separation than is

duct thrust. The experimental coefficients (CN)D(p) are from

53 to 86 percent of the predicted values,

4.5 Summary and Conclusions for Comparison of Data and Theory

For hovering flight, the predicted values of the duct-to-

propeller thrust ratio are, in general, about twice the measured

values. This is probably due mainly to flow separated from the

duct leading edges. However, in the case of the duct tested by

Platt (Ref. 20), which was comparatively long, the measured values

of thrust ratio were much higher than predicted either by the

present theory (for small c/D) or by simple momentum theory (for

large c/D). Additional uncertainty is introduced into the results

by real slipstream effects as described in Section 4.2.2.

For axial flight, the data of Gill (Ref. 13) and Grose (Ref. 14)

are probably most comparable with the present theory, even through

flow separation probably occurred for the duct used by Gill; and

the duct used by Grose was actually too long for accurate comparison

with the present theory. The measured thrust ratios for these ducts

are about half the predicted values.
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The data reduction procedure described in Section 4.2.2 to

account for real slipstream effects was compared with the usual

procedure, and it was shown that the comparison of theory and the

data by Kruger (Ref. 17) was considerably improved when the real

effects were included in the theory.

Excellent agreement is obtained between measured and predicted

values of duct lift force at small angles of attack (ao < 60) using

"L the data by Grose (Ref. 14), despite the large chord/diameter ratio

(c/D - 0.475). Only large angles of attack were tested for the

duct used by Gill (Ref. 13), and this duct was probably stalled.

Hence, the duct thrust and pitching moment were much smaller than

the calculated values. Nevertheless, the normal force was more

than half the computed value.

The following conclusions are drawn from the comparison of

data with the present theory:

(1) For the only source of data for (CN,D at smallI(P)
angles of attack with a thin duct to which the flow was attached

(Ref. 14), this derivative was in excellent agreement with the

present theory. Hence, the dominant contribution of the ducted

propeller to the dynamic stability of a torpedo-like configuration

is well predicted by the present theory (see Section 3.5).

(2) At high angles of attack with flow separation from the

1. duct (Ref. 13), experimental duct coefficients (CN)D(P) were from

53 to 86 percent of the predicted values. The measured values of

II
!I
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duct thrust and pitching moment were much smaller then predicted. ]

This is due in part to real slipstream effects but probably more J
to effects of flow separation upon duct leading-edge suction.

(3) There is an urgent need for experimental data on ducted -I

propellers which do not exhibit leading-edge separation. i

I

I

ci
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1 5. OUTLINE OF TEST PROGRAM

It is evident from the previous comparison of ducted propeller

data with the present theory that additional data are needed for

all flight conditions with short ducts and without flow separation

from the duct leading edge. There are no data whatever for the

dynamic stability derivatives of isolated ducted propellers. Fur-

thermore, there is an apparent need for parametric experimental

i [ studies of such design variables as propeller position in the duct,

duct chord-to-diameter ratio, duct camber, etc. Basic flow studies

should be directed toward prevention of flow separation from the

duct leading edge and direct measurement of real slipstream effects.

The following experimental program is specifically designed

I to provide ducted propeller stability derivatives for comparison

with the present theory. A model configuration is suggested,

L specific tests are outlined for each flight condition, and the

stability derivatives are predicted for the suggested configuration.

5.1 Model Design

The ducted propeller shown in Figure 9 is suggested for ob-

I taining data comparable with the present theory. The inner dia-

meter is constant so that tip clearance does not change with pro-

Ii peller location. The radius of the inlet lip is relatively large

and is provided with boundary-layer control to prevent leading-

edge flow separation. Boundary-layer control is considered

j [ essential to prevent flow separation from the duct for all the

test conditions. Suction through either a slotted or porous tube

11
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seems suitable for boundary-layer control, and the precise shape

of the leading edge may have to be investigated. Counter-rotating,

variable-pitch propellers should probably be used to minimize swirl.

The Hiller rig (at DTMB) having three-bladed propellers with a

diameter of 24 inches and a spacing of 1.5 inches (Ref. 13) might

be used with a modified duct. The propellers should be movable in

the duct to at least two well-separated positions (fore and aft).

If the propeller axial location is varied in the duct, the

inflow velocity distribution to the propeller disk will vary with

axial position of the propeller. The present analysis assumes a

uniform disk loading, and it may be necessary to vary both blade

setting and blade twist to obtain a uniform disk loading experi-

mentally. On the other hand, changes in blade setting alone may

give a good enough approximation to uniform loading. In order to

investigate this point, we have calculated the radial profile of

axial velocity at the entry, exit, and central duct planes for

c - 0.2D and a. - 0. TI results (Fig. 3(a)) show the axial

velocity profiles induced by the bound vorticity on the duct and

the trailing vorticity shed from the disk. It can be seen that the

profiles are relatively flat, except in the range 0.8 < r/R < 1.

This is particularly true when the axial component of the free

stream velocity, V0 cos ao, is added to these profiles to obtain

the total axial velocity profile. Thus, the existing dual pro-

pellers used with the Hiller rig seem adequate for the study out-

lined here. (These propellers were designed to operate in a *1

*1
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uniform flow.) Furthermore, actual duct thickness and boundary-

layer effects tend to decrease the velocity near the duct leading

edge from the computed value, which is singular as shown in Figure

3(a).

iiIn the Hiller rig, duct forces and total configuration forces

were measured (Ref. 13). By subtraction, the forces on the propeller

plus motor housing were obtained. By use of a dummy motor, the

aerodynamic force on the driving motor housing was shown indirectly

to be small. However, it would be desirable to measure this force

directly, particularly at angle of attack, by use of a separate

fairing or wind shield over the motor. In this way, any appreciable

disturbance to the slipstream and/or error in the measured aero-

dynamic reaction on the propeller could be measured directly.

5.2 Hovering Tests

The following specific procedures are suggested for the hover-

ing case: Use only the highest practical propeller speed (and

Reynolds number). Observe flow separation and measure minimum

boundary-layer-control flow required to prevent it. Using this
amount of boundary-layer-control, measure TD(p)h, TP(D) h ,P,

Compare thrust ratio with theory by selecting data as described in

Il Section 4.2. For each value of 0, traverse the slipstream and

measure the magnitude and direction of the time average-velocity

vector to determine whether the swirl is actually a minimum when

is maximum. The traverse probably should be about one

diameter downstream of the duct exit plane in order to minimize

iLi
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both blade interference with the probe and excessive mixing of the

slipstream with entrained fluid. Total pressure should also be

measured to determine whether it is nearly constant across the

wake, as assumed. Use at least two propeller positions in the

duct, varying ý3 at each.

5.3 Axial Flow Tests

If, as predicted by theory, there is found to be little effect

of propeller axial position on TD(p) h/Tp(D)h for hovering

(measured at optimum qp for each position), then only one central

position might be used in the axial flow tests. However, at least

one check case should be made to determine whether propeller

position also has little effect in forward flight, as predicted.

Repeat the procedure described for a sufficient number of advance

ratios to establish the values of C (•,X), 0> (0,1), andT P(D)

TD(p) /T P(D) at maximum ip. Compare TD(p)/Tp(D) with theory.

Use the duct alone to see if TD 0 as predicted for zero duct

thickness and to determine whether the use of boundary-layer control

actually has little effect upon TD (aside from preventing flow

separation in the presence of the propeller).

5.4 Tests at Angle of Attack

Repeat the procedure in Section 5.3 for a sufficient number

of values of a in the range 0 < ao < 900 to determine the

effect of a on the aerodynamic reactions (including the moment0

and normal force on the duct and on the propellers). Use the duct

alone for comparison with theory (at CT - 0) and also for

pI
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' I comparison with results obtained for the value of X for which the

propeller is free-wheeling. The latter comparison will indicate

I the effect of propeller losses. Traverse the slipstream to deter-

SI mine swirl, variation in total pressure, and deflection of the slip-

stream boundary by the free stream (if feasible in the presence of

I mixing). For each run, use sufficient boundary-layer control to

prevent flow separation everywhere on the duct. Compare the static

f stability derivatives and thrust ratios with the theory for which

each of these is given as a function of c/D, CTp(D) and a0

at optimum Ip.

Many of the tests suggested herein are actually being planned

at DTMB and should be coordinated with that facility.

5.5 Pitching (q) Tests

In evaluating stability derivatives for pure pitch (as on a

rotating arm) use the same blade pitch settings which gave optimum

1 p in Section 5.4 for each value of a0 . Determine the boundary-

v layer control required to prevent flow separation for each run (or

determine this in Section 5.4 versus Reynolds number and use the

I.. results here). Use maximum arm radius and speed to maximize Reynolds

number and minimize boundary-layer control requirement. Use the

I duct alone to obtain additional information (as in Section 5.4) at

angles of attack for which separation can be prevented. Measure

the aerodynamic reactions on the duct and propellers, propeller

j power P and propeller rotational speed a. Compare with

ii
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theory which gives these (as function of c/D, C (D) %o, Dq/VO

at optimum lp ). If a rotating arm of radius Ra is used, then

V
q - (213)

a

and the dimensionless pitch parameter is

Dq . D (214)
V R

o a

Several values of this ratio should be tested in order to deter-

mine the maximum value to which each aerodynamic reaction remains

proportional to Dq/V as predicted by theory.

5.6 Plunging (4) Tests

Test with pure sinusoidal plunging with boundary-layer con-

trol as required to prevent separation. Cover a sufficient range

of ao and A to establish the functional relationship of each

variable. In addition to the complete configuration, test the

duct alone as in Section 5.4.

The present theory (for low frequency, small angle of attack,

and low amplitude oscillation) predicts that the duct normal force

due to &is independent of ?, xo, and frequency; that is,

c2

) C (215)
D &~ D(p) D2
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This theory should be compared with data of low frequency, but

higher frequencies should also be tested. All the aerodynamic

reactions on the duct and propeller should be measured. Both the

i steady values and the time variations should be measured for com-

parison with previous tests (Sections 5.3 and 5.4) and with theory.

1• 5.7 Predicted Coefficients and Derivatives

7. The static thrust coefficients and dynamic stability deriva-

tives for the proposed ducted propeller configuration shown in

1. Figure 9 are given below. They are obtained from Sections 3.1 and

3.4 (with c - 0.2D) as functions of the disk loading CTP(D) and

the flight conditions (cO, q, &). In the equations given below,

S/V CTp(D) + 1 - cos 0,D(p) is a positive pitching

moment about the duct midchord diameter, and MP(D) is about a

propeller diameter.

I Hovering Flight (V - 0)

For hovering flight, the predicted thrust ratio is, from

Equation (17),

iT TD(P) 2

T T- (In 80 - 2)2 - 0.724 (216)
Ii TP(D)h

Axial Flight (ao - 0)

For axial flight, the predicted thrust ratio is, from Equations

I: (11), (168), and (169),

Iq

I I
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S) 0.724 (217)

TP(D) 1 + 2(Vo/-)

Steady Flight at Angle of Attack

For this flight condition, the static coefficients of the duct

in the presence of an actuator disk are from Equations (9), (11),

and (13).

CND() sin ° .91 cos ao + 0.845 V-) (218)

2

CT) D(P) - 0.724 V 0 + 1.46 sin2  o (219)

(Cm D(P) - 1.45 sin a 0  
(220)

The only static derivative of an isolated dual propeller at

small angle of attack, with constant blade pitch and chord, and

with -A - Vo/ZD - 0.1, and a - 4Bb/3rD - 0.1 is from Section 3.2.1j

a normal force derivative given by

(CN) p -0.05, 0.10, 0.16 for - 10, 20, 30, respectively,

since 

(221)

(C *) "0 (222)nu

For the Hiller propellers, we have aL- 0.126 (from Reference 13).

Due to duct interference there is a pitching moment on the

propeller which is estimated (from Eq. (65)) to be given by
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T C)- 0.451, 0.015(23
(Cm)D (P)(23

with the propeller located at the entry, central, and exit planes

I of the duct, respectively.

[ Pitching Flight

For small rates of pitch, the duct q derivatives in the

[ presence of an actuator disk, are from Equations (18), (20), and

((c22 - 0.675 L+ 0.126 cos a0  (224)N Nq)D(P) Vo

(CT) (P) - -0.0460 sin a (225)

(Cmq)•(p) - 0.0376 (226)

The q derivatives for an isolated propeller at ao - 0

are, for the previously assumed propeller parameters: a side

force derivative given by

-Cqp-0 (227)

and for a single propeller a pitching moment derivative given,

respectively, by

[ (Cqp -0.17, 0.17, 0.18 for 10- 100 200 300 (228)S• mq)P

Note that (Cmq for a dual propeller is not given in Reference 5
Iq P

I nor is it calculated herein.

Li
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Due to q interference from the duct, there is a pitching

moment on the propeller which is estimated (from Eq. 71) to be

given by

Cm q) (D -. * - + 00, -12.0, -10.2 (229)
(C) D- ( .P

with the propeller located at the entry, central, and exit planes

of the duct respectively.

Plunging Flight

For small angles of attack, the estimated normal force deriva-

tive of the duct due to plunging (Eq. (30)) is

(CN.) P 0.126 (230)

There is no thrust force or moment due to 6; i.e., T) D

(c) 0
m•D(P)

The estimated reaction on the propeller due to plunging, for

constant blade pitch and chord and aO << 1, is only a normal

force with (see Eq. 41)

(CN D - b sin 2 (231)
P (D)
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S 6. CONCLUSIONS

A theoretical analysis has been presented for predicting the

I I forces, moments, and stability derivatives of an isolated ducted

propeller. The analysis is an extension of the steady-flow anal-

ysis of Reference 1 in which the duct is represented as a straight,

Sshort, thin ring surrounding a uniformly loaded actuator disk

which produces a slipstream velocity much greater than the lateral
Scomponent of the flight velocity (V. >> V0 sin ao0). This repre-

sentation, of course, requires that the minimum disk loading (for

which the theory is valid) increase with angle of attack. In the

present work, the approximations of Reference 1 have been investi-

gated in detail and the effect of moving the propeller in the duct

has also been taken into account. In addition, the interference

effect of the duct on a real propeller with finite blades has been

incorporated, and the cases of pitching and plunging motions have

been treated. An experimental program specifically designed to

check the theory has been outlined.

6.1 Theoretical Results for Isolated Ducted Propeller

SThe results quoted here are applicable to all angles of attack

to the extent that the propeller can be represented by an actuator

.i disk. Any results pertaining to the forces on a propeller with

finite number of blades, however, are restricted to small angles

of attack. With this restriction, the following conclusions can be

drawn from the theoretical analysis of an isolated, moderately

loaded, ducted propeller of solidity 0.1:
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(1) Except for thrust force and pitching moment due to pitch

(about the duct center), the forces and moments on the duct are

considerably larger than those on the propeller.

(2) When it is located within the duct the propeller produces a

positive damping(--Cm ) which is greater than the negative damping due
mq

to the duct. This fact is significant for STOL airplanes with ducted

propellers mounted on a lateral axis through the center of gravity.

(3) The forces and moments acting on the duct are unaffected

by the location of the propeller inside the duct.

(4) The duct interference on the propeller produces a large

positive damping, unless the propeller is placed near the duct lead-

ing edge where it produces large negative damping.

(5) The normal force, provided by a ducted propeller, is from

20 to 60 percent greater than for a flat plate of the same projected

area, even for zero disk loading.

(6) All of the static and pitching derivatives for the duct in

the presence of the propeller are found to increase with propeller

disk loading. Some derivatives increase nearly proportionately to

disk loading, and others are nearly independent of it.

6.2 Theoretical Results for Torpedo-Like Configurations

From the analysis of a torpedo-like configuration (in axial

flow) consisting of a body of revolution with rear-mounted ducted

propeller, the following conclusions are drawn:

(1) The dominant contribution of the ducted propeller to the

damping is produced by the normal force on the duct due to its

induced angle of attack arising from the q motion. This damping

is increased at higher disk loadings.
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(2) Both C q and Cmd due to the hull are large and are

associated with the hull boundary layer, which has been assumed to

oscillate as a solid body with the hull. Therefore, a more refined

analysis seems warranted, even though C and C due tb the

hull tend to cancel one another.

1[ (3) The thrust interference between the ducted propeller and

the hull appears to be large, depending upon the geometry and the

V• propeller disk loading. Therefore, a more refined analysis of this

[i effect appears to be warranted.

(4) Because of the radial inflow produced at the base of a

symmetrical hull with attached flow, such a hull is expected to

affect the stability derivatives of a rear-mounted ducted propeller

in the same direction as would an increase in propeller disk load-

ing.

V 6.3 Comparisons with Experiment

The comparisons attempted herein between the present theory

and available experimental data have indicated the following con-

clusions:

(1) Only one reference (Ref. 14) provided data free of flow

I. separation for a check on any of the calculated stability deriva-

tives. This check showed that, for small angles of attack, the

Spresent theory gave excellent predictions of the static stability

derivative CN The dominant factor in the dynamic stability of

the torpedo-like configuration at zero angle of attack was found

L | to be the lift curve slope of the isolated ducted propeller.

1'
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(2) Only one reference (Ref. 21) provided data for a short

duct free of flow separation as a check on the thrust ratio in

axial flow. For this case, the theory over-predicted TD(P)/TP(D)

by about 20 percent at the lowest advance ratio. The error was

larger at higher advance ratios because of duct drag not included

in the theory.

(3) In one case of a rather long unseparated duct in hovering

flight (Ref. 20), the measured ratio TD(p)/Tp(D) was far above

that predicted by either the present (small c/D) theory or the

asymptotic simple momentum theory for infinitely long ducts. There

thus appears to be a real need for a theory valid for ducted pro-

pellers of intermediate chord/diameter ratios.

(4) There appear to be no experimental data for pitching

moments on unseparated ducts during steady flow at angle of attack

or for either normal force or pitching moments on unseparated ducts

at high angles of attack. However, the static stability derivative

CN predicted by the present theory at angles of attack of 500 and

80 a agreed within about 15 to 45 percent with the data of Reference 13

for which the flow was probably separated at the duct leading edge.

(5) There are at present no experimental data for the dynamic

stability derivatives of isolated ducted propellers.

(6) The data reduction technique presented herein succeeded

in bringing theory and experiment into closer agreement than would

be indicated by comparisons made at the same advance ratio and/or

blade setting.
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" 7. RECOMMENDATIONS FOR FUTURE WORK

On the basis of the foregoing conclusions and the investiga-

tions undertaken in the present report, the following recommenda-

tions are made regarding future theoretical and experimental work

on ducted propellers:

V (1) There is an urgent need for systematic experimental data

on ducted propellers having relatively straight, thin ducts of

small chord/diameter ratio without leading-edge separation at all

flight conditions to check the theory. A program designed for

this purpose has been suggested herein.

(2) A theory should be developed for treating ducted propel-

lers of larger chord/ diameter ratios than are treated in the

V present theory. In addition, the effects of duct camber and thick-

F" ness should be investigated.

(3) The present theory should be extended to cover nonuniform

disk loadings and wake swirl.

(4) The effects of interference between a ducted propeller

and a wing, ground plane, or adjacent ducted propellers should be

studied theoretically, especially for VTOL configurations.

(5) The theory should be extended to study the speed deriva-

It tives (V) of a ducted propeller at angle of attack, which may be

significant in the transitional flight regime for a VTOL aircraft.

(6) A more refined analysis should be carried out to study

the mutual interference between the hull and rear-mounted ducted pro-

peller for a specific modern torpedo and for a high-speed submarine.

tI
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This analysis should include a further investigation of the aver-

aging process used herein because of its possible significant effect
on the duct derivative CN which evidently dominates the damping

in pitch of the configuration.

(7) Engineering calculations should be made to investigate

the relative importance of the ducted propeller stability deriva-

tives on the overall stability of vehicles in the following cate-

gories:

(a) VTOL aircraft employing tilting ducts.

(b) Vehicles employing multiple ducted propellers in which
mutual interference may be important but ground
effect is not.

(c) Ground-effect machines.
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APPENDIX A

DUCT SURFACE VELOCITY DISTRIBUTION W FOR
PURE-PITCH FLIGHT CONDITION

As explained in Section 2, the complete velocity distributionT
I • W for pure pitch is composed of three parts (see Fig. 2): wh + h

due to hovering, wa + wa due to free stream V0  at angle of

attack a0 , and w + W due to pitching rate q about the
0 q q1

duct midchord diameter. Here we shall determine successively these

-i three parts of W. The derivation of the first two parts will be

compared with Reference 1, from which it is taken, in order to

point out certain detailed errors. However, the final result of

Appendix B (after integration of W2 and cancellation of higher

order terms in c/D) gives net duct forces and moments which are

identical with the results given in Reference 1 for both hovering

and steady flight at angle of attack.

1." A.1 SURFACE VELOCITY DUE TO HOVERING, wh + h

v For no motion of the duct (hovering flight), the duct surface

velocity distribution wh is induced by the vorticity shed by

the actuator disk (y in Fig. 2) and by the bound vorticity yh

which is generated on the duct to satisfy the boundary and Kutta

I conditions (considering yh to lie in a flat surface). Finally,

as described in Section 2, gh is self-induced by 7h due to
the fact that this vorticity actually lies on a ring rather than

on a flat surface.

The complete surface velocity distribution on the duct for

hovering flight, wh + -- can be obtained from the results of

this section by adding Equations (A.15) and (A.47) for wh and

Equation (A.53) for hi" This gives

ii!
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Whi Us÷ - - e+ In 16 2) tan
Wh 7i -u. + w. +~ 7h 2r 2h. WFs hi 27r 12 c

- [In !D- In(l - cos e) (1 -cos e)

+ I (n 16D 1 I(n D + i.) (A. )

On the inside and outside of the duct trailing edge, Wh/y

is 3/4 and -(1/4), respectively. For 7hi/,y we obtain the

following values

c/D wh.

0 0

0.1 0.136

.2 .189

.4 .240

Thus W is somewhat smaller than wh at the trailing edge.hi

It is assumed that the disk loading CTP(D) or pressure

rise across the disk Ap, is constant over the disk, which is

located at the exit plane of a thin duct of constant diameter

D. The flow field generated by the actuator disk is induced by

the shed vorticity y which surrounds its slipstream. The T

vorticity distribution is approximated by a sheath of vorticity

uniformly distributed over a semi-infinite cylinder as shown in

Figure 2 and Sketch A.l.
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jyh Actuator disk

I "I)
,6 tlY /

JO J

ii I

C -

Sketch A.l.- Ducted actuator-disk nomenclature.

A.1.1 Velocity Induced by y Shed From Actuator Disk

"V The velocity components induced directly by y at the duct

surface, are (p. 319, Ref. 6):

M IIVl-k 2 K()(A.2)

v - [(k ~K(k) + E (k)] (A.3)

where K(k) and E(k) are the complete elliptic integrals of first

and second kind, respectively, as defined in the List of Symbols.

The series expansions of these functions are (p. 307, Ref. 6):

K(k) In 4 11In ( 4 (1 - k 2 )

I +~6 4 (9 . 4.. 7)( k + .
Nr
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E (k) -1 + -1 (In 4~ k2

16 (n 2~7T - -k) 2(A5

where

k 2  (A.6)

(A.7

1 + K

D2

1 ke 2 . 2/D2 (A. 7)

2D

and for Equations (A.2) and (A.3) we have -=t a! shown in

Sketch A.l. Now, if Jl << jD 1, then k 2 ~1, and the leading

terms in the series expansion of E and K are simply

K(k) In ýLD (A.8)

E(k) - 1 (A.9)

The duct lies on the surface r - D/2, -c < < 0. Since

we shall assume here that c << D, the velocity components induced

by the actuator disk on the duct surface are given approximately

by the leading terms in the series expansion of Equations (A.2)

and (A.3) which are (for - t)

u I - n - (A.10)
YS 2r 2 D(
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, V = (2 - In 8) + n ](A.1)
These equations agree with Equations (A.2),and (A.3) within

I percent and 10 percent, respectively, when

[ I 4 (A.12)

A.1:2 Complex Potential F Required for Boundary Condition

In order to make the duct a streamline, a distribution of

vorticity must be added along the duct chord which induces a

radially inward velocity component vF equal to the radial

component v s (Sketch A.1). To do this, we shall find a complex

potential function F(z) which gives vF - v by treating a

chordwise strip of the duct as a two-dimensional airfoil.' It is

convenient for this purpose to introduce the Joukowski transfor-

mation (p. 159, Ref. 12,)thus

Z = + - x + iy (A.13)

and with the actuator disk at the trailing edge of the duct, we

have from Sketch A.1

Xs c (A.14)

The chordwise strip (- c/2 < xs < + c/2) maps on to the unit

circle e - e such that on the duct surface z - x. - c/2 cos e.

Thus, we can write Equations (A.10) and (A.11) in terms of e as

I. follows:

'This approach is justified with the restriction that c << D.

I
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(1 -_ _ - Cos e n & _ In(1 - cos 0) ]n )u-Ys 2 2 2D [I -

V [2 - n 8Dc + In(l - cos 0 (A.16)

Let the required complex potential function in the C plane

-ih nJ ian
F' - I' + if" - 2• In C + nC (A.17)

Then the complex velocity in the c plane is given by (p. 150,

Ref. 12)

u iv + dF'
UF -vF +d

irh n• iann
""2-h + (n+n (A.18)

On the circle (•s" el)' we have

I irh --ie 0-

UF '-ivF ' h 2--e - ianne (n+l)iO (A.19)
s s o

The complex velocity at a corresponding point in the physical

plane is

u _ - iv =- d (u u -(u iv ) (A.20)F F dC dz F F c(

so that on the flat plate (Cs M ei) we have, in terms of 0,

uF - iv " u - vis 0  (A.21)
F S s vF) ci sine
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Substituting Equation (A.19) into (A.21) gives

Fh an e-ineu - ivF - sin e cann - e (A.22)
F F Tc sin 4c sin 9
s 5

Therefore, vF is finally found to be
s

+vF sin e - Im 57 2n (cos nO -i sin ne) (A.23)
s n-o

I. Now let us express v s in the same form as vF "s The

following identity can be found on page 202 of Reference 22)

ln(l - cos ) - in 2 - 2 cos ne (A.24)

By use of this and the identity

2 sin e cos nO E sin(l + n)e + sin(l - n)e (A.25)

Equation (A.16) can be written in the form

ii ~~' sn j~((2 -n "D~) sine6

- n in(n + 1)e - sin(n - 1) (A)26)

Now, setting v (Eq. (A.26)) equal to vF (Eq. (A.23)) in order
to satisfy the boundary condition of zero normal velocity through

the duct surface, we find that (an) is real, so that Equation (A.23)

L can be written as

r 2a n
vF sine- - n sin n0 (A.27)Fl c.1s

II



A-8

Substitution of v for vF (Eq. (A.26) into Eq. (A.27)) then

gives

(2- in6 )sin e + 00 sin ne

+ T. sin(nn + 1) + sin(n- 1) . 0

n 1

(A.28)

By reindexing, this equation can be written in the following form:

(2- In 1D )sin e + 4Tna 0 + \ (4rna n + n sin ne

- sin ne . 0n-1
n 2

(A.29)

Consequently, the coefficients an are found to be

a oaoM0

4r 2 - 4 (A.30)

a -= -- c - for n > 1
n 2rn(n - 1)

Thus, Equation (A.17) for the complex potential can be written as

iW - iax

F' - V' + ip,' I- h n C + i 7c- + - (A.31)"27r 2v n n(n- 2 )
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iI

liO

Now, on the circle ( e i) we have

th~e

Fis 's - 2r- ian(cos nO - i sin ne) (A.32)

I Thus, substitution of Equation (A.30) gives

the Y a

T D '--- + Q Z sin n19 +a sin e (A.33)
• s 2r 2vin n(n 2 -1) a.

L In order to evaluate the series the following technique is used

(from Ref. 1): We use the identity from Reference 22, page 188

sin ne. -e 0 < e < 2v (A.34)

n 2
n= 1

We then form the product

(cos s - 1) sinn 2 sin(n+l)0 + sin(n-ln- sin n0

(A.35)

Now, by reindexing, we can write Equation (A.35) as

(in n- 1) . -e (cos e 1) + I sine 0 < 0 <
N 2 

(A.36)

Thus, substitution into Equation (A.33) yields

FK~-(cos 1) + sn l + a sine0
s 21r 2 2

S~(A.37)

ii
LII
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Finally, substitution of Equation (A.30) and differentiation with

respect to e gives the surface velocity diAtribution on the unit

circle due to F. That is,

_ ah .c 1 -_Cos ' +---'sin_+_3_cs e

WF h27r 27rse 2 2 4

+ In -1 E)cos e (A.38)

A.1.3 Fulfillment of the Kutta Condition

The value of the total circulation around the duct in hovering

Sh will now be determined such that the Kutta condition of finite

velocity is satisfied at the trailing edge of the duct. Mathemati-

cally, this requires that the trailing edge be a stagnation point

in the transformed plane. That is, ws' - 0 at e - 0. From

Equation (A.38), with e - 0, we have at the duct trailing edge

ti 'h_ -c I 16D) (.9
(wF' s. c F 2r 2r~ (1 -i - (.

This is only the part of wt' which is due to the potential

function F. However, w t', the part due to y is zero, as shown

below. From Equations (A.15) and (A.16) with 6 - 0, we find

that the velocity components induced by T at the trailing edge

of the plate are

uYt 4

(A.40)
vt 2 - In_8 + In(1 - cos e)
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The complex velocity in the circle (•) plane is related to

that in the physical plane by

II u i -v. (u-iv A)- (A.41)

Evaluation at e - 0 gives

u - iv~t' " iv 9 (sin' 6 + i sin e cos e)I u,~ -iI

(A.42)

I: Hence, substitution into Equations (A.40) gives

t ut'"8 sin 0 cos 0 In(l - cos e) le-o (A.43)

v - sin2 0 tn(l - cos e)- (A.44)

I Evaluation of Equations (A.43) and (A.44) shows that they are

each equal to zero; therefore, w is zero.| Yt
Thus, if we set WFt' equal to zero in Equations (A.39)

WFt

to satisfy the Kutta condition, we find that

2- (tn 16D i (A.45)

Finally, substitution of Equation (A.45) into Equation (A.38)

N I gives the surface velocity on the circle

LI

7- (2 - in 1D (1- coo B) + (B - )sin (.6

WF s 4r IA (A.(1

Hence, we find from Equation (A.41) that the surface velocity

distribution on the plate due to ~y is
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dO 2 WFSSdQ_! sWF " WFs dxs c sin e

"- - [(2 -1 n 1)tann + (0 -7r) (A.47)

We have now found the hovering velocity distribution (wh- h u, + wF)

induced by y and This result (Eq. (A.15) plus (A.47)) is

identical with Equation (12) of Reference 1. Now we seek the

averaged self-induced component -.h as discussed in Section 2.
1

A.l.4 Self-Induced Velocity w hi

As described in Section 2, there is a surface velocity compo-

nent wh which is self-induced by the bound vorticity Th due1

to the fact that it lies on a ring rather than on a flat surface.

We shall find Whi, its average value, by summing the elementary

velocity components induced by the vorticity (Yh deR) on each

elementary ring deR of the duct (Sketch A.2).

cR h

D.4-

•'h dtR

Sketch A.2.- Velocity components induced by a
vortex ring of constant strength.
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Each elementary ring consists of a vortex ring of constant strength

(with respect to 0) equal to Vh dR where is the axial

Idistance from the ring to a fixed point on the duct surface. Thus

-c < eR < c. For c/D << 1, we can write (see pp. 306 and 307 of
RNeff. 6)

( D 'Yh dýR[ dUh ) •n 4 ) D

""h dýR 
eR << D (A.48)

dv h d" d~s =2VýR

Thus, dvh , the radial velocity component, is equal to that
s

for a straight line filament of infinite length (D = c) if

tR << D. Consequently, Vh and the boundary condition have been

accounted for correctly in the foregoing (flat plate) analysis.

However, we must account for uh , the axial component of velocity
s

which is self-induced by the bound vorticity on the duct, since

[ is zero for a straight line filament.
5

Following the method used in Reference 1, both the bound

L vorticity distribution Th and the self-induced velocity wh.
.

will be averaged over the chord as follows. Corresponding to the

surface velocity wh, we obtain the bound vorticity distribution

Yh- wh(e) - wh( 2v - e) (A.49)

Thus, using Equations (A.15) and (A.47) for Wh, we have

[ h [(In 16-'D -_2 tan i + A.0
Th Vc 2" n A O

LII
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The average value of Yh over the chord is therefore

+ iT2

Cf
- dx5  sine 0 e - 7- (n 16 - 1) (A.51)

2 0

For this constant vorticity, Equation (A.48) gives

5 +xs

M 2YD(In 4D 1 -i ) [n (•R ) ]d

g- + x5)[n( A2

S2 + s !

W ,Y I•_• (n 4D- 1)c- a• X.) [in (Q2- xs)- 7"

Averaging this expression over the chord gives the averaged self-

induced velocity .h ashi

+2

"qh c / hc(2)

2

TC(n16D )( 4D In I) A.3
"4j (tD - - ) tn - + D (A.53)

This equation is identical with Equation (13) of Reference 1,

except for the last term (+ 1/2) which is incorrectly given as

(- 1/4) in Reference 1. The accuracy of the averaging process is

examined in Appendix D.

!I
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A.2 SURFACE VELOCITY DISTRIBUTION FROM V0  AT ao

f Here we shall find the second part of W shown in Figure 2,

j namely w( + ;i which is due to the free stream V° at angle

of attack ao. The first component w0  is induced by the boundIa
vorticity y• which is generated to satisfy the boundary condi-

:tion and the Kutta condition, and by the wake vortex filaments

dr~3  which are shed from the duct at angle of attack. Finally,

Sas described in Section 2, '. is self-induced by y1  which lies
1

on a circle.

A.2.1 Determination of w

The elementary velocity induced by a semi-infinite trailing

vortex filament in the duct wake (dr in Fig. 2 and Sketch A.3)

ii. is given by the Biot-Savart law (p. 304, Ref. 6). Consider the

radial, axial, and tangential components of the induced velocity.

The variation of the radial component along the chord is negligible

because the trailing vortex filaments extend to + •. Consequently,

we can set c - 0 as in Sketch A.3. Also, there is no axial com-

ponent of induced velocity, and the effect of the tangential corn-

ponent is considered to be negligible here (as in Ref. 1).

The radial component of velocity induced at 0 by the vortex

filament dr at 0' is given by (p. 304, Ref. 6)
- aw

-drr

-dv 4 t (A.54)

w 8 47rD tan
S~2
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ii

D dl' dvw

WSS

Vo sin ao cos

Sketch A.3.- Trailing vortex filament. j

The strength of the trailing vortex filament dr % is equal to

the decrease in r(,, the flight induced bound vorticity on the

duct, as one moves around the ring. Thus, we can write

dv M ( ) (A.55)
s 47rD tan 2

Now, for a flat plate in uniform flow at angle of attack, the Kutta

condition gives the circulation as

rf " icV sin a (A.56)
f0 0

a"

11
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where Vo sin ao is the normal velocity component. The normal

velocity at each chordwise strip of the duct due to both the free

stream and the wake-induced velocity (Sketch A.3) is given by

V0 sin ao cos 0-vw (A.57)0 0
Thus, the circulation about the duct chord is, from Equations (A.55)

F" and (A.56),

2-7

r.. a rcV sin a Cos c d- (A.58)
0

The method used in Reference 1 to solve this integral equation for

1' (0). is to assume initially that

ra - rk cos q (A.59)

where Pk is a constant, such that

!dr
a - rk sin (A.60)

L Substitution of this value and the trigonometric identity

cot 2 - 1 + cos(o - 0') (A.61)
2 = sin(O - o')

Sinto the integral in Equation (A.58) yields

1]. J sin 0' cot 0-1-' do' - -2r cos 0 (A.62)f 2
0

V" Substitution of this value into Equation (A.58) then gives

I Fk - c o sin ao0  (A.63)

ii
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which satisfies the initial assumption that rk does not depend

on 0. Solving for rk gives the 0 variation of duct ci4r-ula-.. .

tion from the free stream and wake when the Kutta condition is

satisfied everywhere at the trailing edge. Thus, we have from

Equations (A.59) and (A.63),

r.-(kCo cV ~in a0 ) Cos (A.64)

( 082D

The term rc/2D in the denominator is due to the wake. The

Surface velocity distribution wa induced on each chordwise strip

of the duct by the free stream and wake is assumed to correspond

with that for a flat plate at incidence so that (from Eqs. (A.78)

and (A.80))

wa-vo cos 14 +- _tan (A.65)

and, with Equation (A.64), we find that

Vo sin ap8(.6

wa WV cos a + V0 sina-2 cos tanA.66)
2D

This equation is identical with Equation (17) of Reference 1.

A.2.2 Determination of -wi

Finally, the self-induced velocity Wi due to the circula-
i

tion r. about the duct must be included. To do this, we shall

first find an expression for the elementary axial velocity com-

ponent induced at radius r - D/2 by an elementary vortex ring

(Sketch A.4) having diameter D and circulation dra - d~k con',

in accordance with Equation (A.59).
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I
IIdr, dv a

• [ \•R --O----dus

iD

I.

Sketch A.4.- Velocity components induced by a vortex ring[ with variable strength.

SI Then, by using the results on pages 305 through 307 of Reference 6,

we can write

27dua _- dk [cosc4 -• 0' - 1] cos / dO' (A.67)
Sk r + 2 -2 cos( o -

i Further, by letting

d2 _ 1 (A.68)

a and

I. XE R 2 2A69

D2

[4ib
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we can rewrite Equation (A.67) in the form

d 2

2d k3 -2 cos ' cos 4 X-cos 4 cos2X+- sin • sin X cos3 X
2v dl' 2 3/2 d

S2( k2sin2 X
2 (A.70)

The limits of integration can now be shifted to 0 -• r, and, since

the last term integrates to zero, Equation (A.70) becomes

du 7r/ 2 Cos 2X - -j sin 2X [(1 k k2Sin 2X) + (k 2 - 1)]

-27rD[ s - CS4 .d
""1 ( - k2 sin XdA

(A.71) "

Now, using the relations given on page 306, of Reference 6 for the

complete elliptic integrals, we find that the above equation can

be written as

du -dl' ai'A2 _ ) (4 -k 2)E17
dU•s -r K + k(A.72)

where K(k) and E(k) are defined in the list of symbols. Finally,

using the leading terms in the series expansions of K and E

(Eqs. (A.8) and (A.9) for ýR << D, k2 % 1, we obtain the desired

expression

-d (- I4D iN
duc - a3- In R I (A.73)

This result is four times smaller than the corresponding expression

given by Equation (19) of Reference 1. In a similar manner, it can

be shown that the radial velocity component dva for the ring

s.
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it is not considered here, since it has already been accounted

for in Equation (A.66).

Let us now find ýi by the averaging process described in

L • Section 2. The average vorticity (or circulation per unit length)

{ along the chord length is, from Equation (A.64),

"I' c V sinct cos (A.74)

2D

so that each elementary vortex ring (Sketch A.4) has strength

dr. - ;F dtR (A.75)

At xs, a fixed point on the duct surface, the velocity induced
by the bound vorticity ;F distributed over the chord is (from

Eqs. (A. 73) and (A.75)):
S- -

u0-9- + Xs

SO 2 3 - in 4D)c + .- [i n x. )s -

(2 + x ( .) [n4 (Qc+(x.) [ (.76)

/\ r/ 1

[l
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Averaging this expression over the chord gives the average induced

velocity
•+c
2

w --~ f dxs = - - tnc

2

V 0  sin -0n 4D cos • (A.77)

2D

This result is four times smaller than the corresponding

Equation (20) of Reference 1, and the term 3/2 appears here within

the parentheses rather than the 9/4 of Reference 1. The accuracy

of the averaging process used both here and in Reference 1 is

examined in Appendix D.

A.3 SURFACE VELOCITY DUE TO PITCHING q

Here we shall find the third and last part of W indicated

in Figure 2, that is, wq + w., which is due to the pitching motion

of the duct q about its midchord diameter. Due to this motion,

each chordwise strip of the duct translates horizontally and rotates

about a midchord axis (Sketch A.5).

qD

2

Sketch A.5.- Pitching motion of duct.
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Thus, Wq will be considered in three partss

w.w due to the rotation of each chordwise strip about its
I q midchord axis

w__W2 due to the horizontal translation of each chordwise strip

ii w induced by the wake shed from the duct as described inWq3 Section 2.

[ Finally, i is self-induced by the bound vorticity y which
qiqJ corresponds to wq and which lies on a circle. We will neglect

the effect of the yawing motion of the chordwise strips, so that

for each strip w is due only to the pitching component of itsqI

rotation. This is consistent with Section A.2 where only the

component of V0  at a which was normal to each strip was

considered to be effective.

The final results show that the predominant effect of q is

Scaused by wq2 (the horizontal translation) when c << D. Thus,

the net force and moment on the duct due to q are nearly the

same as for a duct which distorts with each chordwise strip

moving parallel to itself with a velocity (qD/2) cos • (see

Sketch A.5). With the initial assumption that c << D, the flow

over each chordwise strip is nearly two dimensional so that we

can obtain W9 and Wqi from flat-plate formulas. We shall,

therefore, start the analysis by obtaining these formulas which

will be useful later when we consider the flow over the chordwise

strips of the duct.L'I
V
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A.3.1 Flat-Plate Formulas ]

Consider the flat plate in Sketch A.6 which is in a pure-pitch -

flight condition with a not necessarily small,

\
Tf

lq tyf

Sketch A.6.- Flat plate in pure pitch.

We wish to find the surface velocity distribution wf - wf + wf
a q

and the bound vorticity distribution Yf - Tfa + -Yf on the flat

plate which are generated by the two parts of its motion, transla-

tion V0  at angle ao, and rotation qf about its midchord axis.

For the first part, V0  at Uo, with the Kutta condition fulfilled,

we have (Ref. 8, p. 38)

ef
wf VO cos a0 + V sina 0 tan- (A.78)

f 0
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T - 2V sin ao tan - (A.79)

rf = 7cVo0 sin ao (A. 80)

and the thrust force due to leading edge suction is given by

T- c(Vo sin o) (A.81)

I. To find the second part, we shall use the well known "equi-

valent camber" rule as follows- The bound vorticity yf must

induce a velocity normal to plate equal to the normal velocity

component of the plate (vf - qxf in Sketch A.6) in order to
q

satisfy the boundary condition of no flow through the plate. The

same distribution of normal velocity is caused by a circular-arc

camber (Sketch A.7) for which

- h - 4 c 2) (A.82)

Thus, the slope of the cambered airfoil is

dy- - - 8h (A.83)

dx c 2 c

and the normal velocity is

Ii C

vc- - x V cos ao (A.84)
c

Thus, by equating vc and vf, we obtain the equivalent camber

h corresponding to the pitch rate qf of the plate. That is

qfc (A
[c 8M o (.85)

80C a
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Yc

yC

Sketch A.7.- Cambered airfoil nomenclature.

Now, since circular-arc camber produces a surface velocity distri-

bution given by

Wc 4 h V cos a sin e(
Wc 2 c 0 0 c (.6

when the boundary and Kutta conditions are satisfied (see Equa-

tion (10.7) of Reference 8), we find for the equivalent camber of

Equation (A.85)

W fq cqf sin ef (A.87)
q

Now, with Equations (A.78) through (A. 87) for a flat plate, we are

ready to find the bound vorticity distribution and surface velocity

distribution induced on the duct by its pitching motion about its

midchord diameter.
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J A.3.2 Determinationo w

The pitching rate of each chordwise strip caused by pitching

I. of the duct about its midchord diameter (Sketch A.5) is q cos ,.

Therefore, using this value in Equation (A.87) for qf gives the

first component of wq; namely,

wq 2 cos 0sin e (A.88)

so that

C
2 V

r f " dq s dXsi - dI- qc2 cos
qY 1 fsin( (

2 o (A.89)

A.3.3 Determination of wq q2

The translational velocity of each chordwise strip of the

duct caused by its pitching about the midchord diameter (Sketch A.5)

is -q(D/2)cos •. This chordwise translation produces the surface

velocity distribution c
qw2 2 cos (A.90)

which is clearly equal on inner and outer surface. Hence,I
i .q - qr - 0 (A.91)

A.3.4 Determination of wSq 3
Since r varies with # there must be vortex filaments

I dFw which are shed parallel to the duct axis, as shown in Figure 2.!ii
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The effect of the duct wake which is generated by the q motion

can therefore be found by analogy with the results obtained in ]
Section A.2.1, since the wake due to angle of attack shows a

similar character. The net duct circulation generated by the q

motion is r -=qP since rqP is zero; and rq (Eq. (A.89)) is
2 1,

analogous to the first term on the right side of Equation (A.63)

(where qc/4 now replaces Vo sin a

Thus, we obtain the total circulation including the wake

effect by analogy with Equation (A. 64):

+ Cos M (A.92)

q q + (- (qc

2D

The circulation due to the wake is (by subtraction of Eq. (A.89)):

1_ 2D l+(A.93)q 2D 1 + VC
2D

The q wake induces a nearly constant normal velocity over

each chordwise strip of the duct, since each vortex filament in

the wake extends to + w (Fig. 2). Thus, the chordwise distribu-

tions of surface velocity wq and bound vorticity 'y (i.e.,
33

2w ) which compose Pq are (from Eqs. (A.78) and (A.80) withq q

- r/2).

q 1 
3 tan rqc o tan C (A.94)q3 8D (1 + 2

2D1 .1



A-29

I' A.3.5 Determination of V

The self induced velocity 1W. due to the bound vorticity in

pitch (yq " Yqy + 'qY) can be found by analogy with the results
q 3

V" in Section A.2.2 for y7l. If we replace V0 sin ao by qc/4, as

in Section A.3.4, we obtain from Equation (A.77)

Ii . t
1 2 coo(A.95)

[ 'qi 8D 1 +
T2D

I..

it-

L

iii
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APPENDIX B

INTEGRATION OF W2 TO OBTAIN DUCT
COEFFICIENTS AND DERIVATIVES

Expressions for the net force and moment on the duct will be

developed here for the pure-pitch flight condition (Fig. 2) by

"integration of the pressure distribution p8 over its surface.

These expressions are then used to obtain the static coefficients

and q stability derivatives of the duct in the presence of the

propeller.

The pressure distribution ps (eo) is related to the surface

velocity distribution W by the pressure equation in moving coor-

dinates (p. 87, Ref.12) as applied to the pure-pitch motion (Fig. 2)

p m" Po+ ((V2 W2 _ V32) (B.1)
Ii

where Va is the velocity (in a fixed frame of reference) of the

point in question on the duct surface. Since the first two terms

on the right side are constant over the duct surface, they do not

contribute to the net force ND(P) ot moment (MN,(p). Further-

more, the velocity V5  is the same on the inner and outer surface

and hence does not contribute to ND(p) or (-%)D(P)* Thus, the

duct force and moment can be found by substituting -(p/2)W 2  for

v p5  in the following expressions:

"N(P) IJPs dxs cos O do m - e f p sin 9 cos 0 d9 do
0 0

(B.2)
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]
D(P) ~ - sXs dxs D cos 0 do

(MN)D(P - 8

2W• 2W

pD f cos e sin e cos 0 de do (B.3)

The duct force and moment due to leading-edge suction T are "

given by

TD - (T) do (B.4)

2W

D(P) 2- (T) R cos 0 do (B.5)

0

where T will be evaluated subsequently. The net moment on the

duct in the presence of the propeller (Fig. la)is then

ND (P) m (K)D (P) + (M'))D(P (B.6)

Let us proceed by finding W2 and integrating it. over the

duct surface to obtain Equations (B.33) and (B.35) for ND p) and I

(MN)D(p). as functions of aO and qD/VO. Finally, TD and

(MT)D(P) are evaluated in Section B.4.(,IT)
B.l INTEGRATION OF W2  TO FIND DUCT FORCE AND MOMENT

The surface velocity distribution on the duct during pure-

pitch flight from Equation (7) is

"+w + + (B.7)
W wh + whi +a + Wq i (w) +

]
]
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1! where

w q w + wq + wq (B.8)
2 3

and the components are given by the following equations:

w wh + whi Wh. w w i wq w q 3 q w

(A.1) (A.53) (A.66) (A.77) (A.88) (A.90) (A.94) (A.95)

By substitution of these equations, we can write

W 2 f (e) + f (e) cos o + c (B.9)
2r 2

where

f(e) e + D (1-cose) Inc (i -come)

- + In c tan (B.10)

f () - c tan T + 2 sin6+c (B.11)
2 2 2 2

C = wh. + VO cos + 4 (3.12)

V sin a - (rqc 2/8D)c - 0 0(3.13)
2 1 + (rc/2D)

+ wC. . SD + a m(.14)
3 2 cos

and the c's do not depend on € or e.

LI
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The duct normal force and pitching moment, from Equations (B.2)

and (B.3) are given by

N p D 2 7 sine der W2 cos 0 do (B.15)
ND(P) 8J

SDCA f f (e) f (e) + c] sin e de (B.16)

and I

PC2- . 242 cos e sin e de f7W 2 coB 0 do (B.17)
0 0

27.- C- f f2(e) [2-- f (e) + cl] cos e sin e de (B.18)

Note that terms which integrate to zero have been omitted in the

above expressions. We shall now evaluate the remaining integrals

by letting 2p e and making use of the expressions which follow

them.

2W V
1- f c f sin e dO

0

-C 1 W[c 1 cos e) + acsin2 e + C sine0 de

0

27 2c~ (c + (B.19) I
27

0

~1

c cf• cos e sine0 de -c Ic2 (B.20)

2"
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32r 1 2 (B.21)

27r

f -2r (1e-+ cog Ico• e)

(+n c- tan c(1 - cos e)+ -csin2 + casin 9]

~rF (C ) .2(B22

II22+ n -E- sin p + L- sin 0 In sin
0

16D) cog p 2

+ c sin • co. d3 
(B.23)

2 f [1c 2 + qc) sin 20 - qc.. sin' + c 3 sin p coo p dj

+ c In [ (c + qc)sin 4p - qc sine3

L2y 0

+ 2-J (c + qc)sin4 p - qc sine] In sin d1
0

-(2+ In c) c sin pd

(B.24)

II
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13 2,y C + qc) [ . + (3 In c--' + )]+ qc

- ( n c- + 1)] - c + In-) -

C 4D +y nC + + - '+r + 2-g C i--• +

2L1- 4D (1 GD 6/J 4L Y 2 D (I16D 6 -
i +

(o• + + In c (B.25)

2T

I f f sin e cos e de (B.26)

2W
27F

27 f f [(C + qc)(sin 2 - 2 sin4 p) - qc(sin4 p _ 2 sin6e)

0

+ c (sin • - 2 sin 3 )cos 01 do (B.27)

I r f [7-2p + cIn sina+ - sin2 In sinpI 7f

0

(2 + In 1) csi ( (c] + qc)sin2 3 - (2c + 3qc)sin4 1

+ 2qc sin 6 p + c (sin p -2 sin 3 )cos dp (B.28)3

'1
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-2 / [(c + qc)p sin2 - (2c2 + 3qc)p sin43 + 2qc 0 sin6eII
I-+C(p sin p- 2p sin •) cs 32 dc

2In+ W 2 [(c +qc)sin4 - (2c2+3qc)sinap + 2qc sin P] CIO

2c• (c +qc)sin 41 _ (2c +3qc)sinso + 2qc sinso in sin p dp

(2+ In c f+ c. (sin 2p - 2 sin4 p) dp

V (B.29)

14 I 2y (2 c + qc) [ +. jc+ c (6 In + 7)] + (2c + 3qc)

+ 5 in c- 37 +- n.r + V - -6D (35 In 12- i
16D 16D 6" 8qc 1D 1

4- n c(B.30)!~ ~ 1( + MD÷l •(.o

m y c C( c +c n c +19 +c. .

[12:7 c 2 D 16 3 nI- 32D 1--D 12 2 2 16D n

1[ (B.31)

Ii

II
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The following expressions have been used in evaluating the above

integrals:
r r

f sin m 0 do - m p -2

m-

00

P• sinm- 2 pdd

f4

0o

f 316
0

J sin6 p do 5 s--

0

8 35r2
P sins P do 256•

P cos 0 sin3 0 d = - 3

f co P sin5 3 do - - 3

32

0

P cos p sins 5 do - - 5..=

f 96
0

7I



I

i B-9

sinm 0 CI w M •_. sin M-2 P do

si 2 PooI 2

sin 4 d- 3-
fm sin8 • aJ sin-•

0 0

7r

sine p do-r1

o 0I fsin8 Pd
0

I
f sin 8  o o 0 rmsmer

I0
7r r 7r

s in6 71d sin51 d - sin 3 d
f Cos 0 f Co o
0 0

s in d - in Cos P 0 from symmetry

II
I

fIo

0-
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B-10 ]

f sink In sin 3 d3 k-2 k +k1) (k 2)]
/k +2 2 2(--~)0 2

7 sin' p in sin 3 d1 - [.(/2 * - ](3)) " ~2f (3) 2 3
0

"7'6 (- 3 1 n 4 + 7

r 7r (7Z2

sin6 3n sin 1d - [?p (7- -(4)

5 in 4 + 533
sin ~ ~ 8innsi 15()

where

F (n + 1........ (2n- 1)217

F(n) - (n - 1)! n is an integer > 0

0(n + 1) c - + I + 1+ ........ " +n
2 n

'11- - in 4

2-) 4+ 2

(i "- c- In4 +-8

2 3

i1
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(2). 46
- 6 - in 4+ 5

e Euler's constant

J sin m P(In sin P)cos 1 d1 - 0 from symmetry

0

cos e(l - cos e) - 2 sin - 4 sin4P

sin2 e coS e - 4(sin 2 - 3 sin4 P + 2 sin6 f)

sin e cosoe - 2(sin - 2 sin' 3 )cos

1I By substitution of the above expressions into Equations (B.16) and

(B.18) we obtain finally the duct normal force

ND(P) D 27c 1 -2- + (- n - + + [ 2c 1 -46

In i- + - + o1+ In iD (B.32)

ND(P) D 1 + (c/2D) [ wh + V0 c

8D 16D 6 2 (V COSW16D

[r- C(hi + Vcos ac,+1)+ ( + Ini~] (B.33)' -
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and the duct moment due to ND (P)

(MN)DP • - 2D 2- + --2D• cn 4

-c 2  n c- + 1 + c 2(1 + In -j (B.34)

- 2 sin a. - (qc 2/8D) 2 Vo:o a +
(MN)D(P) 4D 1+ (.c/2D) IY\\hi

+ c (In i- + + 16VD (n cD + i-(

_ DS_ qio c5Q (B.35)
< V O V0 Cos 16

B.2 STATIC (a) COEFFICIENTS OF DUCT

As described in Section 2, we find the static (a) coef-

ficients of the duct by setting q - 0 in Equations (B.33) and

(B.35). This gives

8D0 10) + 4 V1 o + rn

C)r o 4VO
CND(P) 0 D (_1777 c 2D

+ 2sy (n c+~) 2Vwa ( + Ink)-8D~o 16D 6 V%2CO8S 1 6)

(B.36)

and

a1



I

(1o0,0) r + Cos a +

(ci0 ,O+O n .•')0 12 (- cos al nf'4K (P) D2  l+ (irc/ 257 Vo0 2V0

D (I16D 0 o 6

(B.37)

Ii Equation (B.36) is identical with Equation 28 of Reference 1 except

Sfor the addition of the amount(7 - 3 In 2) T in the square bracket.
I '6 8 / DV°

Equation (B.37) is identical with Equation 30 of Reference 1 except

for the sign of the Whi term and the addition of the amount

- in 2) c- in the square bracket. All of these differences3 DVo

appear only in higher order terms in c/D which will be dropped

later.

V B.3 DUCT q DERIVATIVES

As described in Section 2, we find the q derivatives of the

duct by differentiating Equations (B.33) and (B.35) with respect

to Dq/V holding Vo and aO constant. After substitution of
00

1 Equations (A.53) and (A.77) for wh and wai this gives1

-- lC\ - - (rc3/2D 3 )' IVv CO s + i+ -• (ln 16 -i(n I6DSNq)D(P) 1 + jc) I Ly o 4 4DVco)0c

I+ 0 2'C In 16 + 7c +, VoD n 16D + 4VoD2

.2)-8DtnC 16D]+VOD(I nC- 4+OD

3 4D
C3 16D 1 y In - C -3, 16D 5

-- (In- - - 4DVo I'In 6
I 16D 1 I+n 4D 1

n 16 n "L- + 17 + ½C * Cos a (B.38)C C 2
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+22 o cosa 0 5 1 16D

8 D+ ii+ I n c

(4n1 D- 1 Yn (6D + 3

S-- In 16D n- (2.39)
16D2

Only the leading terms in Equations (B.38) and (B.39) will be used

in the subsequent analysis. These are of lowest order in c/D and

are underlined.

B.4 DUCT FORCE AND MOMENT DUE TO LEADING-EDGE SUCTION

The thrust force TD(p) and moment (MT)D(P) on the duct

arising from leading suction will now be determined. The only

parts of W in Equation (B.7) which are singular at the leading

edge are wh) wa , and w , which are proportional to tan(0/2).q3

Hence by analogy with the flat-plate formulas (Eqs. (A.78) and (A.81))

we find that the thrust force on each chordwise strip of the duct

is proportional to the square of the coefficient of the singularity

and is given by

2DWpc - • c j (B.40)
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I B-15

I The total thrust force on the duct is obtained by integrating with

i respect to t. Thus from Equation (B.4) we find

. cD 16D
TD~p) - '-in --•

D (P)

~2D
+ 7 2cD - 0 BV (B.41)

The corresponding moment on the duct, from Equation (B.5), is

I given by

-sin pAaCc sin 16D 2 (B.42)
(MT)D(P) + V si 0 2V -D - 2

i+-i

I

I,

| iI



APPENDIX C

VARIATION OF ACTUATOR-DISK LOCATION

To determine the effect of actuator-disk location upon the

l net aerodynamic reaction on the duct, we shall calculate the sur-

Ii face vorticity distribution yh during hovering flight for two

alternate disk locations, the duct leading edge and midcbord.

It is recalled that the actuator disk was assumed to be at the

duct trailing edge in Section 3.

The leading-edge location is considered first. In this

r case it can be seen (Sketch A.1) that Equation (A.14) is replaced
1.

by

t 2Iixs = t- Cl

SI By following through the analysis in Section A.1 with this modifi-

cation we find that the equations therein are changed slightly as

indicated below.

Equations (A.15) and (A.16) become

u's -- f- (cos e + l)In (cos e + 1) (C.2)

27r [2 ~ e2D(.

i y 2+ In (cos 0 + 1 (C.3)I,

I
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Substitution of e - e + r into the identity used to obtain

Equation (A.26) gives

EI
In(l + cos i) - - in 2 - 2 n cos np (C.4)

nun

By use of this, Equation (A.16) can be written

00

V -s (2 - In sin e - - Z 2 (,)n cos ne sin e (C.5)
Sni.

and Equation (A.26) becomes

sine - jY {(2 - In 16D sine

- _) n-[sin(n + 1)e - sin(n -1) (C.6)
nl

Thus the factor (-l)n+1 is inserted into the summation

symbol in Equations (A.32) and (A.33). Using e - p + r in the

identity from Reference 22,we obtain

Z (_1)n sin n1 3 _ 2 (C.7)

n-1

*1
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f when

-iT <i<T

Multiplying by (cos • + 1), reducing and re-indexing gives the

SI identity
00

1) - sin n + 3
I n|--1) + sin - (cos B + 1) & (C.8)""n(n 2 1 ) 2

n-2

I. when

-Tr < < 7ri

By use of this, the main equations in the series, Equations (A.33)

through (A.47) become

-2- + 2 -c (coS o + 1) + 3 sin e + a sin e (C.9)

rh + [Y 1 + Cos 0 e
r W-- + sin e +2 cos 6
2w 2r 2 2 4

+ - in-E16D VCos (C .10)

h 2 c (3 ( 16D (C.11)

S, + s in- A (C.12)

[ w t 2r (2 D 4c

v 'ut 2 In (C.13)

III,
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rhin c (In 36D - (C.14)

wF - In 1 6 tan + e) (C.15)

Finally Equation (A.50) for the bound vorticity distribution along

the duct chord becomes (with the actuator disk at the duct leading

edge)

Yh - [(n 16D 2) tan e- ] (C.16)

where t

Now following through the analysis in Section A.1 with the

disk at the midchord of the duct, we find that the equations in

Section A.1 are changed as follows. Equation (A.14) becomes

xs " et (C.17)

With this modification Equations (A.15) and (A.16) become

-_j_ [+ 2cos e( In cose -In )] (C.18)UYs 2r D(

V 2- (2 + 1 In cos2 e- in 8) (C.19)

Using the identity from page 188, Reference 22,

- Z • cos 2n - ln(4 cosaO) - In 2 + In cosgO (C.20)

n-i

*1
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S we can write

I v sin e [2 Itn -6D) sin e- icos2ne sine]
nmi

ao a for even n 0

(3 7C _i 6D•

4v (C.22)

a an - 4__ n(_n -i for odd n > 1
00 f

._h"X (s_-2•- ns in (2n• -1+e- -In 16_DD sin (C.23)8 2r 4r E -i nsin -1)e (2
. n =

Using the series from page 188, Reference 22,

T"0

i..0oZI s in q6 (C.24)•n 2(c.2)". nn

fa r

i"~ o < 3 _< 2•r

S and letting e + r, we obtain

00

n_4wn sin 2l

-- 1 n = (C.25)
nmi

7. or

z r~

- s2 n(

[~n-

0! (2
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Forming the product -e coo e and simplifying gives for

- r/2 < e < + 7r/2
-_ ) si (2 - ( . 6

2e cos e - sin e - (-1)n sin(2n - 1)2Zn'(n -1) ('26'

By use of this, the main equations in the series, (A.33) through

(A.47) become

FI 1 7and2 --4 O cos e + 1-in 16D sine (C.

and i

Sh2 + /c n Y6-- - 2 cos e + 0 sin e (C.28)

WF s h 4'c'(.8Fs '4r cJ

when -r/2 < e < + r/2, and when r/2 _< < 3r/2

Y , fl [(9- r)cos 9 + - sine] (C.29)s - r 4-rg 4

and

h F. 16D 1- 2 + (. - 1sin e (C.30)
Ws 2w 4+ L n-s- 2c ~sn

We also find

r 2 4 In 16D 2 (C.31)
wFt 4i c

u . + In-c (C.32)
uyt 2rT (2 2D )

v . + In S (C .33)

rh (21D

E Itn D - 2 (C.34)
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V Finally Equation (A.50) for the bound vorticity distribution along

the duct chord becomes (with the actuator disk at the duct mid-

chord)

[(hIn-[- - 2) tan.-e

for -!<w+T

f and (C.35)

7h = [(In 16.D 2 tan +r-'Y 7 c 2

S~3v
for Z < e -<

It can be seen from Equations (A.50), (C.16), and (C.35) for the

1- three alternate locations of the actuator disk that the net vor-

ticity distribution y + yh is invariant with disk location.

That is, as the disk moves forward in the duct, its trailing vor-

.I ticity y is subtracted from yh so that the sum y + yh is

invariant. Thus, it becomes evident that with the present flow

model the flow pattern (and net duct reaction) is independent of

i" the actuator-disk location for all flight conditions (not only

hovering) so long as the disk is located within the duct. The

static pressure rise through the actuator disk merely causes hoop

tension in the duct downstream of the disk and does not directlyV
-- affect the resultant force on the duct in the present analysis

f since its diameter is constant. For diverging ducts this pressure

rise does contribute directly to duct thrust, however.
I-



I IAPPENDIX D

INVESTIGATION OF AVERAGING PROCESSES

I Two averaging processes have been used in Reference 1 and in

Appendix A herein to obtain the axial velocity distribution on theI duct surface (w Wh +wh i + i) which is self-induced by the

bound vorticity distribution on the duct (,h + ya + yq). Specifi-

I cally: (1) the bound vorticity (y) was first averaged over the

chord length to give y and (2) the surface velocity distribution

I induced by y was averaged over the chord length to give wi"

To assess the inaccuracy which is introduced into the final

results of the analysis by these approximations, we shall use the

I actual chordwise distribution of bound vorticity y to calculate

the actual value of the self-induced surface velocity wi at the

duct.

j I D.l. HOVERING COMPONENT, wh
i

The bound vorticity on the duct during hovering (or axial)

I flight is (Eq. (A.50))

Sh [(n 16D c 2)tan 28' + r ] (D.1)

We shall now find the velocity induced by y at three

points along the chord and compare these three values with the

I average value wh which was used in Section 3.~i

lOnly the axial velocity component was considered because the rad-
3 •ial component induced by a vortex ring for small c/D is nearly
5 the same as that induced by a straight line filament (D - o)

Hence the radial component of the self-induced velocity is zero.



D-2

f~ -0 (x -0.2 s yh dýR

Duct sectionR

-C (Cos e-cos e')

Sketch D.l.- Duct nomenclature.

From Equation A.48 (with eR " c/2 (cos 9 - cos 8') from

Sketch D.1) we find that each elementary vortex ring yh dýR

induces at x the axial velocity component

- 2D 8D In 8D1 (D.2)2 'c(cos e- cos

The total induced axial velocity at xs is therefore obtained by

integration over the duct. That is,

+xs2

Whi . _--_f [(in -1-6 - 2 tan -- + 7r - e] n --8D-

(2 -_ S)

-In jcos e - cos 'j) deR (D.3)

W-- f n 16-D - 2) cos ')+ r sin e'

0 

n.49'8 sin n §Din - 1 -In Co -Cos 91 d~l (D.4)
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Evaluating this expression at three locations we obtain:

at midchord (2xs/C - cos G - 0)

Wn - In c8-D - 1) + In 2 (In-16D 2) + I
wh 47rD L\ CC ~ i

~~1 I(.5)
j Iat the trailing edge (2xs/C - cos e -1)

4I hi [(Ln 16D - 1) (In !D- 1c + (In 16D _ / 2 -1 + In 2]

(D .6)

and at the leadinQ edqe (2x s/C - cos e - - i)

In 16D L,,-..-. 1)(n-9- 1)+ (In16 2) (In 2 + 1)

h 471fD [( \c i C

+ 2 - 3 In 2] (D.7)

Now from Equation (A.53), we have for the averaged value

I[ •Lyin 16D 1 n8 - + (n1 1) In 2)]

i (D.8)

Note that the first term in the bracket of Equations D.5 through

-3 D.8 is identical, and for very small values of c/D, the remainder

i of the bracket is negligible. However, the actual value of the

remainder can be expressed in the form

A (In 16D - 1) + B (D.9)

in each case with the value of A and B tabulated as follows.

ii
iIiI
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Chordwise location A B

Leading edge In 2 + 1 - 1.69 1 - 4 In 2 -- 1.77

Midchord In 2 - 0.69 1 - In 2 - 0.3]

Trailing edge In 2 - 1 -- 0.31 1

Averaged value
used 3/2 - In 2 - 0.81 0

Evaluation of Equations (D.5) through(D.8) for two values of c/D gives

the values for 4rD Wh /cy tabulated below

i

Chordwise location c - 0.2D c - 0.1D

Leading edge 13.09 18.92

Midchord 11.87 16.92

Trailing edge 9.08 13.54

Averaged value
used 11.86 17.09

Thus, the averaging process introduces an error in the local value

of whi of about 30 percent for c - 0.2D.

D .2 ANGLE-OF-ATTACK COMPONENT, w
1

From Equation (A.65), we have for-the bound voiticity on the

duct induced by the free-streamat angle of attack ao.

2ru 9. dru
- w (e') - wa (2-r - '-) tan a- _ d (D.10)

a a a rc 2 dýR



IINow substituting for dr a arnd using e R c/2 (cooG-coosG') in
Equation (A.73) we obtain the total induced axial velocity at x

fr
a ~~8D Iei

w -- (1 - cos G', - In + In Cos - cos e, de,
i 2 r'D

0 (D.1 1)

Evaluation of this integral gives:

11 21rD w *In1 6 DG (D.62)

ra

where G - 2,3,4 at the duct leading edge, midchord, and trailing

edge, respectively.

Also from Equation (A.77), we can write the averaged value of

wi as

a wr - In 4 - In 16_D- - 2.89 (D.13)rF a i c 2 c

This value is nearly equal to the value at midchord. The following

values of (2rD/Pa)w are obtained from Equations (D.lZ and 0.13)

for two values of c/D.

Chordwise location c - 0.2D c -0.lD

Leading edge 2.39 3.07

SMidchord 1.39 2.07

Trailing edge 0.39 1.07

Averaged value 1.50 2.18
used
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It can be seen that the actual values depart considerably from the I
averaged value which was used.

D.3. PITCHING COMPONENT, wq1

The bound vorticity on the duct yq induced by the pitching

motion q (from Eqs. (A.88) and (A.94)) is

=Yq - Yq + " qc cos in 8' - 1 +4D tan (D.14)
1 2D

Using Equation (A.73) (with dr - yq dR and R = c/2 (cos 0 - cos '))

we obtain the total induced axial velocity at x

'r

wqi -4D Cos in2 ' + 7c (1-Cos 01 -
4iD f[si 7c2D

0

-In Icos 0 - cos ej) d8' (D.15)

Evaluation of this integral gives:

at midchord (2x s/C - cos a - 0)

g C (8D- 1 l. rc/2D In 16D CosWqi 8D [(I - + 2 +•. 1 + r__c c

(D.16)

at the trailing edge (2x /c - cos # - 1)
5

qc2 n 8D 1 'rc/2D n - CosWq 8D -- 3 + -n 2--- + (__. 0 c
2D

(D.17)
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and at the leading edge (2x /C *Cos e--1

wq (In 8- 3) + In 2 1 n 16-( 2 Cos ¢
2D

(D.18)

Now from Equation (A.95), we can write for the averaged value

.q C 1~ V 3 + .1 - In 2 Cos (D.19)

By use of ( 8D w G 2(D.20)
c2 CO iqi 2

qc Cos i

evaluation of Equations (D.16) through (D.20) for two values of c/D

gives the following values of G
2

Chordwise location c - 0.2D c - O.lD

Leading edge 0.31 1.16

Midchord 1.55 2.30

Trailing edge 0.79 1.44

Averaged value
- used 1.14 1.90

It is found that the components wi vary as much as 100 per-

cent (but not by an order of magnitude) from the average values

wi previously obtained. The self-induced velocity components gen-
i

erally have only small effects upon most of the final stability

ii
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derivatives. All of them affect only higher-order terms in c/D I
for the pitching derivatives. The a coefficients (p) and 1
TD(p) are unaffected because neither hi nor w. affect the

leading-edge singularity. The error, from averaging whi and•

w ai, in Equation 0.14) for N may be appreciable, however.

Inasmuch as the derivative DN is found to dominate theD

dynamic stability of a torpedo-like configuration, this averaging

error would seem to warrant further attention.

*I
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I APPENDIX E

HULL-BOUNDARY-LAYER CALCULATIONS
II

In order to determine the center of pressure of the hull at

1. angle of attack (a/L in Section 3.5.1 and Fig. 5), the volume of

the hull combined with the displacement thickness of its boundary

layer is required, as seen from Equation (76). This volume will

now be determined by using the "effective" hull radius. Thus, we

let

I rH rH + 6* (E.1)

where rH is the actual hull radius. Now, for the assumed flat-

plate turbulent boundary layer, we have for the displacement thick-

ness 6*

1. 5* -0.37 (Re -I/B (• - XH) (E.2)

and

Srm - L (E.3)

m r m

Thus, we find from Equations (E.1), (E.2), and (78) that

( * 5 -2 /5

/6r 2 2 x

11i' L! L E4

t -



1

E-2

The volume of the hull and boundary layer is then given by 1

+1

Vol* - lrrm2 L f(J* d xH (B.5) 1
-I

Thus, letting -E 2(xH/L), we obtain

+1 +1

5* rL
2Vol ) i dt + 4 r- (1 + t)(.....) dt

rrm L J m J
-1 -f

2+1

L f8/51
rm2 dt (E.6)

--- I

Vol*,. + 40,. L
4_0 L-_ + rL(E.7)

7r m 2L 15 (1 \ 19 r 13 ý

for Re L - 4X10 7 we have from Equation (86)

3L 0.111
r. 05 - 0.223 (E.8)r m 0.5

V - 0.523 + 0.167 + 0.019 - 0.709 (E.9)
7Trm2L

In addition to the volume the following integral is needed -

in Section 3.5.1 for use in Equation (95).

-I
-I



Ii E-3

f 2(rH)X2 XH
4C E* (E. 10)2 22 -- L

2

S+1 +1

4C *- ti- de +4 -L (i - V) - /
22 f rJm 2-

2+1

Q_ 8/5

-1.

100 5 L*0 ý

4C *2 " 0 X13 kri (E.12)2m 19rm ) 2r

4C * - - 0.576 for -- 0.223 (E.13)SI22 rm

The radius of gyration of the hull K will now be determined
y

SIfor use in Section 3.5.1. The mass of the hull is given by

I mH - P Vol - 15 •rm2 LP (E.14)

j 1 and about the hull centroid, at ,- 0 we have

1/2 
L

l JfHKy' - 2p@rm2 Lr f (x, d Li (E.15)
U rm

i1 2

Kym 2. 2 Ir LS 3- 1 2 d ýxL (E.16)H L,



I
E-4

m1HKy 2 - rm 2 L3 f(2 24 + •E) dE (E.17) I

y 4 -
4 rm L (3. 519)

K,2 L (EL20y 28•(.o

Now, about the hull center of gravity, at x- L/10, we find for

the radius of gyration

KL 2 -+ 0.0457 L2 (E.21)

y" 28 100

K " 0.214 L - 2.14 ft (E.22)
y

.I
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TABLE I.- STATIC STABILITY DERIVATIVES OF A PROPELLER.

o 1 C CP (D) o2.17 0.78 V

(CNa)p n*( P

(deg) Dual propeller Single propeller
(refined) (approx.) (refined)

10 0.051 0.142 0.401

20 .105 .279 .402

30 .158 .408 .398

TABLE II.- STABILITY DERIVATIVES OF A SINGLE PITCHING PROPELLER.

Ii V
ST 1 CTD) 2.17 y - 0.78 Vo

1(eg )P___ (D

S(deg) (refined) (approx.) (refined) (approx.)

10 0.155 0.32 0.17 0.28

, 20 .128 .31 .17 .28

I 30 .122 .29 .17 .28

TABLE III.- COMPARISON OF DUCT AND PROPELLER STABILITY
DERIVATIVES DUE TO ANGLE OF ATTACK.

Stab. D(P) P(D)S~De riv.

C 1.95 < 0.154' a
C .072 .130I' ma
Cn* 0 < .4

Cmi -19.4 < 1.5ia
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TABLE IV.- COMPARISON OF DUCT AND PROPELLER STABILITY
DERIVATIVES DUE TO PITCH.

Stab. P(D)
D (P) P(D)___ _ __ _ __ _

C I 9.91 < 0.8 (due to a0 ')Nq

CYqo 0 lk .15 (due to q)

Cm .364 .065 (due to a)

< .5 (due to q)

C n* 0 1< 2 (due to ao')
fq

C mq' -98.7 Il< 8

TABLE V.- STABILITY DERIVATIVF.S ABOUT HULL CENTROID (0.5L)
FOR THE CONFIGURATION OF FIGURE 4.

Flight Stability Hull Duct Propeller
condition derivative H D(P) P(D)

C 0.099 1.95 < 0.15
aN

am
C ma,2. -19.4 < 1.5

Cn,' < Cm

C ' .495 9.91 < .8

-Cyq < .15

q
C ' 52.6 -98.7 < 8

mq Cn q 1 << C m a

CN 14.2 .126 Small compared
with duct

C -57.6 -1.26 Small compared
Ma with duct

q + a C + C -5.0 -100.0 Small compared
_ Ma _-with duct
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TABLE VI.- STABILITY DERIVATIVES ABOUT THE VEHICLE CENTER OF
GRAVITY (0.4L) FOR THE COMPLETE CONFIGURATION OF FIGURE 4.

Flight Stability Hull Ducted Fin Total
condition derivative H Dp(P) F HDPF

CN 0.099 1.95 0.86 2.91

1[ a
C " 27.8 -23.3 -10.3 -5.8

ma

I C " .594 11.9 5.15 17.6Nq
w q

mC " 79.4 -141.8 -61.9 -124.3mq

CN. 14.2 .126 .038 14.4
a

C__ -86.0 -1.51 -. 45 -88.0

Sq + C c + C -6.6 -143.3 -61.5 -212.3|mq m.

TABLE VII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY GILL, REFERENCE 13, FOR AXIAL FLOW.

V. CT(I TD_ ) T D 0.78 - 2
Vo V P(D) Tp(D) exper. P (

0 exper. (pred.) Eq. (205) (pred.)1 -exper. Eq.-(203) Eq. (206)

4.1 1$5 3.1 0.25 0.47 0.25 0.39

S2.4 5.0 1.4 .12 .33 .44 .59

1.8 2.2 0.8 .16 .22 .51 .71

lI
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TABLE VIII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY HORN, REFERENCE 17, FOR AXIAL FLOW. *1

C T D() T D(P) . 0.7 lp Tp2
V T( TP T P(D) 1+2 (VoY) V " (Vj/V )+1
-_ VPP (D)nD exper. (pred.) exper. (pred.)

exper. Eq. (203) Eq. (206)

0 0.46

0.25 1.14 0.46 .32 0.125 0.31 0.81

.50 .22 .11 .18 .036 .51 .95

.75 .068 .034 0 .012 .59 .97

1.0 .018 .009 -. 57 .006 .27 1.0

TABLE IX.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY ALLEN, REFERENCE 21, FOR AXIAL FLOW.

° ToT D(P) 0.7 2

v0  T V- 1+2 (Vo/D) DP PP T "(Vj/Vo)+i
exper. (pred.) exper. (pred.)

exper. Eq. (203) Eq. (206)

20 0.40 0.92 0.38 0.087 0.11 0.70 0.84

25 .60 .40 .19 .089 .061 .77 .91

"II
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TABLE X.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTALi DATA BY KRUGER, REFERENCE 19, FOR AXIAL FLOW.

TDT _D(P) 0.75 2

I o Vo CTP(D) , ) TP(D 0+. 2 (V /Vo)+I
v 0 T P(D) exper.

exper. (pred.) (pred.)I exper. Eq.(203) Eq.(206)

15 0.14 3 3 0.3 0.45 0.42 0.50

S 25 .19 2 0.73 .5 .25 .43 .73

25 .26 1 .41 .6 .13 .50 .83

25 .32 0.5 .22 .6 .08 .56 .90

135 .48 .22 .10 .8 .04 .58 .95

' L TABLE XI.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY GROSE, REFERENCE 14, FOR AXIAL FLOW.

T 0.70 ______2J 0 V T D D* (P) T(* (D) 1+2 (V./Y) p (V /V+)I1
V T(

nD exper. o p(D) (pred.) exper. (pred.)Sexper. Eq.(203) Eq.(206)

22 0.72 0.64 0.28 0.044 0.084 0.77 0.88

I 22 .63 .97 .39 .086 .115 .70 .84

27 .72 1.09 .45 .095 .127 .70 .822i
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TABLE XII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL I
DATA BY GROSE, REFERENCE 14, AT ANGLE OF ATTACK.

0 V CTP(D) ( 0 D (P) (LOD(P)

nD exper. V (per rad) (per rad)ex__ __er. xpr (pred4 )exper. - Eq. (i081 -

22 0.85 0.25 0.12 3.58 3.60

32 1.3 .16 .08 3.56 3.54

TABLE XIII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY GILL, REFERENCE 13, AT ANGLE OF ATTACK.

V. 0 (CN)D (P) T D(P)./T P(D) (Cm)D(P)
a pred. pred. pred.

o exper. , Eq.(209) exper Eq.(210) exper. Eq.(211)

50 3.40 18 1.76 2.02 0.11 0.56 0.42 2.52

50 1.80 9 .88 1.32 .20 .75 .23 1.13

80 3.25 15 1.12 2.12 .15 .82 .44 3.68

80 2.05 9 1.07 1.47 .10 1.12 .30 2.41 "
.Ii

ii
.!
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(a) Ducted actuator disk nomenclature4
A -uz D (P (D)+

aI a IsI r

On inner surface 0 < e P

S~On outer surface 'i" < 6 ( 27r"

Xs- c/2 cos1 (b) D plane transformation.c u

Figure 1.- Mathematical representation of ducted propeller.
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q R r a
aI

aoa

Hovering wh + Wh -

'Vh

W-
a a

aa

0

Pitching qq

about rnidchord diamieterq

'Vq Components of pure pitch

Figure 2.- Nomenclature for ducted actuator disk
in pure pitch flight.
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Assumed bull, center of gravity at O.4L

Ducted propeller

rm

jV 0  40 ft./sec., L -10 ft., D -r 1 ft., c -0.2 ft.

Figure 4.- Complete torpedo-like configuration.

IMi
H m

L LO

x, 4/Lin1/2 xH/L -1/2

Figure 5.- Hull nomenclature.

AJ

Propeller
swirl

W V

R VS2 rn
A0 Section J-j

- DuctI ~ wake

Figure 6.- Slipstream nom~enclature. 
V swin l
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.43 .6y- Rear

Duct D PS III prop
Duc D 3 SFront .--- 'I'-r ln•'ron11.0, , p/ lane

C3 ~170 for max Mhprop 1. 5

018 for max rplane (ropeller
" 18° for max Mh IaL spacing)

Duct D PS I2 / 12"

S0 for max Mh and jh 1.5 "

Angles indicated are blade pitch setting •.

Asymptote

0
4j

4J

0150

12
17

0 ,,_ _ _ _ _ __ _ _ _ _ _

0 .1 .2 .3 .4

c/D chord to diameter ratio

(a) Data by Gill, Reference 13.

Figure 7.- Comparison of theoretical and experimental
thrust ratio in hovering flight.
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I E; Horn 39iI Reference 17

h6
4Moser90
Reference 18

0.33 < S_< 0.89

C0 Kruger •2
Reference 19

It

4.71

I Asymptote

o 1.0
.4J

'.4

.5 o5 0-

m :89450

150
•)350

E .1 .2 .3 .4 .5
c/D chord to diameter ratio

(b) Data by Horn, Moser, and Kruger.

Figure 7.- Continued.
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[3 Grose 157 1

Reference 14

I
32" ---

o Platt
Reference 20

Long centerbody 24"

2.0

0450

0350 .
0400 13

1.5

4J

Asymptote

1.0

E-1

.55
D 15°

0350
10°

0 -.. o ii
S.2 .4 .6 .8

c/D chord to diameter ratio

(c) Data by Grose and Platt,

..Figure 7.- Concluded.
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Figure 8.- Plots of data from Reference 13 for duct
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